【密码学】AES简单学习
欧拉函数
公式
相关概念
对于公式的解释
取模运算
模指数运算
python中处理函数
欧几里得拓展算法
证明:假设 a>b1、显然当 b=0,gcd(a,b)=a,此时 x=1,y=0;2、ab!=0 时,设 ax1+by1=gcd(a,b);bx2+(a mod b)y2=gcd(b,a mod b);根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);则:ax1+by1=bx2+(a mod b)y2;即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
RSA涉及的元素
N:大整数N,我们称之为模数(modulus)
p 和 q :大整数N的两个因子(factor)
e 和 d:互为模反数的两个指数(exponent)
c 和 m:分别是密文和明文,这里一般指的是一个十进制的数还有一个就是n的欧拉函数值,在求解d的时候常用
加密过程
选择两个不相等的大素数p和q,这里选61和53(实际应用中,越大越难破解) 计算出模数 n = p * q = 61 * 53 =3233 计算 φ(n) = (p−1) * (q−1) 即 n 的欧拉函数,φ(n) = 60 * 52 = 3120 随机选择一个 e 满足 (1<e<φ(n)),且 e 和 φ(n) 互质,在 1 到 3120 之间选择,选择了 17(实际应用中常常选择 65537 ) 取 e 对于 φ(n) 的模反数 d,计算方法: e * d ≡ 1 (mod φ(n)) 即:e*x+φ(n)*y = 1
17x+3120y=1,解得一组整数解为(x,y) = (2753,-15),即 d = -15 将 n 和 e 封装为公钥(3233,17),n 和 d 封装为私钥(3233,2753) 对明文A进行加密:B≡A^e (mod n) 或 B = pow(A,e,n),得到的B即为密文
对密文B进行解密,A≡B^d( mod n) 或 A = pow(B,d,n),得到的A即为明文
RSA工具
RSA-tools2使用
P 第一个大素数Q 第二个大素数 (P、Q长度不能相差太大)E 公钥(随机数,必须满足:gcd(E,(p-1)*(q-1))==1) 即 E 与 (p-1)*(q-1) 互质N 共用模数,由 P 和 Q 生成:N=P*QD 私钥:D=E^(-1) mod ((p-1)*(q-1))
使用步骤
1、单击“Start”按钮,然后随意移动鼠标直到提示信息框出现,以获取一个随机数种子2、在“KeySize(Bits)”编辑框中输入 32 ;3、单击“Generate”按钮生成;4、复制“1st Prime(P)”编辑框中的内容到“Public Exponent(E)[HEX]”编辑框;5、再次重复第 1 步;6、在“KeySize(Bits)”编辑框中输入您所希望的密钥位数,从32到4096,位数越多安全性也高,但运算速度越慢,一般选择1024位足够了;7、单击“Generate”按钮生成;8、单击“Test”按钮测试,在“Message to encrypt”编辑框中随意输入一段文本,然后单击“Encrypt”按钮加密,再单击“Decrypt”按钮解密,看解密后的结果是否和所输入的一致,如果一致表示所生成的RSA密钥可用,否则需要重新生成;9、到此生成完成。其中:“Private Exponent(D)”编辑框中的内容为私钥;E8D85AA7“Public Exponent(E)[HEX]”编辑框中的内容为公钥;15E03“Modulus (N)”编辑框中的内容为公共模数。19F834DB9请将上述三段十六进制文本保存起来即可。
大整数分解
yafu-x64.exe
factor(需要分解的整数)
msieve.exe
msieve.exe 0xA41006DEFD378B7395B4E2EB1EC9BF56A61CD9C3B5A0A73528521EEB2FB817A7 -v
msieve.exe –help 查看帮助-v 意思打印具体分解的情况-q 仅仅打印能找到的因子
openssl
-in 选项指定待解密的数据文件msg.bin.enc-out 选项指定解密后的输出文件msg.bin.dec-inkey 选项指定用于解密的私钥Key.pem,由于输入是私钥,所以不再需要使用选项-pubin-decrypt 选项表明这里是进行解密操作-pkcs 选项指定解密处理过程中数据的填充方式,对于填充,可选项有:-pkcs, -oaep, -ssl, -raw,默认是-pkcs,即按照PKCS#1 v1.5规范进行填充
openssl genrsa -out key.pem -f4 2048
生成私钥,并导出公钥生成2048 bit的PEM格式的RSA Key:Key.pem openssl rsa -in key.pem -pubout -out key_public.pem
从私钥导出公钥:Key_public.pem echo "hello rsa" > msg.txt
为了简便起见,这里将字符串”hello rsa”存放到文件msg.txt作为测试数据 openssl rsautl -in msg.txt -out msg.txt.enc -inkey key_public.pem -pubin -encrypt -pkcs
使用公钥key_public.pem对测试数据msg.txt进行加密生成msg.txt.enc openssl rsautl -in msg.txt.enc -out msg.txt.dec -inkey key.pem -decrypt -pkcs
使用私钥key.pem对加密后的数据msg.txt.enc进行解密,并将结果存放到msg.txt.dec文件中
例子
实验吧 RSA
openssl rsa -pubin -text -modulus -in public.pem
分析公钥得到 N 、EExponent(E)= 65537 (0x10001)Modulus(N)= A41006DEFD378B7395B4E2EB1EC9BF56A61CD9C3B5A0A73528521EEB2FB817A7
msieve.exe 0xA41006DEFD378B7395B4E2EB1EC9BF56A61CD9C3B5A0A73528521EEB2FB817A7 -v
p39 factor: 258631601377848992211685134376492365269p39 factor: 286924040788547268861394901519826758027
使用 python 脚本解密 rsa.py,用到的库 win10 上没装好,在 kali 里可以,用 kali 运行 python2 rsa.py 得到私钥 private.pem
import math
import sys
from Crypto.PublicKey import RSA
keypair = RSA.generate(1024)
keypair.p=258631601377848992211685134376492365269
keypair.q=286924040788547268861394901519826758027
keypair.e=65537
keypair.n=keypair.p * keypair.q
Qn = long((keypair.p-1) * (keypair.q-1))
i =1
while(True):
x=(Qn * i) + 1
if(x%keypair.e==0):
keypair.d=x/keypair.e
break
i+=1
private=open('private.pem','w')
private.write(keypair.exportKey())
private.close()
openssl rsautl -decrypt -in flag.enc -inkey private.pem -out flag.txt
参考
【密码学】AES简单学习的更多相关文章
- Log4j简单学习笔记
log4j结构图: 结构图展现出了log4j的主结构.logger:表示记录器,即数据来源:appender:输出源,即输出方式(如:控制台.文件...)layout:输出布局 Logger机滤器:常 ...
- shiro简单学习的简单总结
权限和我有很大渊源. 培训时候的最后一个项目是OA,权限那块却不知如何入手,最后以不是我写的那个模块应付面试. 最开始的是使用session装载用户登录信息,使用简单权限拦截器做到权限控制,利用资源文 ...
- CentOS 简单学习 firewalld的使用
1. centos7 开始 使用firewalld 代替了 iptables 命令工具为 firewall-cmd 帮助信息非常长,简单放到文末 2. 简单使用 首先开启 httpd 一般都自带安装了 ...
- Windows 下 Docker 的简单学习使用过程之一 dockertoolbox
1. Windows 下面运行 Docker 的两个主要工具1): Docker for Windows2): DockerToolbox区别:Docker For Windows 可以理解为是新一代 ...
- 在MVC中实现和网站不同服务器的批量文件下载以及NPOI下载数据到Excel的简单学习
嘿嘿,我来啦,最近忙啦几天,使用MVC把应该实现的一些功能实现了,说起来做项目,实属感觉蛮好的,即可以学习新的东西,又可以增加自己之前知道的知识的巩固,不得不说是双丰收啊,其实这周来就开始面对下载在挣 ...
- Linux——帮助命令简单学习笔记
Linux帮助命令简单学习笔记: 一: 命令名称:man 命令英文原意:manual 命令所在路径:/usr/bin/man 执行权限:所有用户 语法:man [命令或配置文件] 功能描述:获得帮助信 ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- mongodb,redis简单学习
2.mongodb安装配置简单学习 配置好数据库路径就可以mongo命令执行交互操作了:先将服务器开起来:在开个cmd执行交互操作 ...
- html css的简单学习(三)
html css的简单学习(三) 前端开发工具:Dreamweaver.Hbuilder.WebStorm.Sublime.PhpStorm...=========================== ...
随机推荐
- [cf1491H]Yuezheng Ling and Dynamic Tree
将其按照区间分块(即$[(i-1)K+1,iK]$作为一个块),并定义$f_{x}$表示$x$的祖先中编号最小且与$x$在同一个块内的节点,$f_{x}$可以通过$f_{a_{x}}$转移,即$f_{ ...
- [bzoj1853]幸运数字
容易发现幸运数字只有1024个,暴力标记倍数还是会tle的 容斥,即从中任选i个的lcm,复杂度为$o(2^1024)$ 剪枝一:当答案超过1024就不用算了 剪枝二:当某个数是另一个数的倍数时就删掉 ...
- javaweb监听
监听项目启动 package com.java7115.quartz; import javax.servlet.ServletContextEvent; import javax.servlet.S ...
- [SVN] Branch and Tag
在 SVN 中,如何建立分支以及如何标记Tag. 右键要处理的文件夹,选择 "TortoiseSVN" - "Branch/tag...",进入下面界面: To ...
- Qt5加载SVG格式的图片并更颜色
QIcon MainWindow::qiconFromSvg(QString svg_path, QString color) { QPixmap img(svg_path); QPainter qp ...
- Apache发布支持Java EE微服务的Meecrowave服务器
Apache OpenWebBeans团队希望通过使服务器适应用户来消除复杂性.所以,该团队发布了Apache Meecrowave项目1.0版. Apache Meecrowave是一款小型服务器, ...
- 洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)
题面传送门 题意: 求 \[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \] \(T\) 组测试数据,\(1 \leq T \leq ...
- js ajax 请求
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- nordic 51822 sdk. timer 的使用
它的源代码和头文件分别为app_timer.c/app_timer.h.这是Nordic为我们提供的虚拟定时器,这个定时器不同于硬件上的TIMER,而是基于RTC1实现的一种虚拟定时器,其将定时功能作 ...
- 工作学习2-gcc升级引发的崩溃
分享一下调查gcc 8.0下,函数漏写返回值崩溃问题,调查记录. 现在新的硬件,基本操作系统都是redhat 8.0,升级后测试时,发现了一个崩溃问题,记录一下. ================== ...