Content

在一座城市中,每个人的电话号码都是由六位整数组成的,例如 11-45-14。

现在有 \(n\) 个人,第 \(i\) 个人有 \(s_i\) 个人的电话号码。已知:

  • 出租车司机的电话号码由六个相同的数字构成(如 66-66-66)。
  • 披萨外卖的电话号码由六个递减的数字构成(如 65-43-21)。
  • 其他的电话号码都是女生的。

现在给出这 \(n\) 个人所拥有的电话号码。众所周知,找一个拥有某种事情相关的人的电话号码最多的人办这件事总会很靠谱。你需要求出你在办某件事的时候应该找哪些人。

数据范围:\(1\leqslant n\leqslant 100\),\(0\leqslant s_i\leqslant 100\)。

Solution

这题是一道较为简单的模拟题。

我们利用 scanf 的特性,按照格式输入没个电话号码的六个数字,然后按照题目给出的规则将每个电话号码归入题目给出的类型中,同时统计每个人所拥有某种类型的电话号码的数量。

统计完以后,分别按照拥有某种类型的电话号码的数量降序排列,然后找出拥有和最多数量相同的人,最后再按照输入顺序输出即可。

Code

int n, num[107], cnt;
struct node {
string name;
int x[107][7], taxi, pizza, girl, id;
}a[107], ans1[107], ans2[107], ans3[107]; ib cmp1(const node& tmp1, const node& tmp2) {return tmp1.taxi > tmp2.taxi;}
ib cmp2(const node& tmp1, const node& tmp2) {return tmp1.pizza > tmp2.pizza;}
ib cmp3(const node& tmp1, const node& tmp2) {return tmp1.girl > tmp2.girl;}
ib cmpid(const node& tmp1, const node& tmp2) {return tmp1.id < tmp2.id;} int main() {
n = Rint;
F(i, 1, n) {
num[i] = Rint, a[i].id = i; cin >> a[i].name;
F(j, 1, num[i]) scanf("%1d%1d-%1d%1d-%1d%1d", &a[i].x[j][1], &a[i].x[j][2], &a[i].x[j][3], &a[i].x[j][4], &a[i].x[j][5], &a[i].x[j][6]);
}
F(i, 1, n) {
F(j, 1, num[i]) {
int fl1 = 1, fl2 = 1;
F(k, 1, 6) if(a[i].x[j][k] != a[i].x[j][1]) {fl1 = 0; break;}
F(k, 2, 6) if(a[i].x[j][k] >= a[i].x[j][k - 1]) {fl2 = 0; break;}
if(fl1) a[i].taxi++;
else if(fl2) a[i].pizza++;
else a[i].girl++;
}
}
sort(a + 1, a + n + 1, cmp1);
int tmp = a[1].taxi;
sort(a + 1, a + n + 1, cmpid);
printf("If you want to call a taxi, you should call: ");
F(i, 1, n) if(a[i].taxi == tmp) ans1[++cnt] = a[i];
F(i, 1, cnt) cout << ans1[i].name << (i == cnt ? ".\n" : ", ");
sort(a + 1, a + n + 1, cmp2);
printf("If you want to order a pizza, you should call: ");
tmp = a[1].pizza, cnt = 0;
sort(a + 1, a + n + 1, cmpid);
F(i, 1, n) if(a[i].pizza == tmp) ans2[++cnt] = a[i];
F(i, 1, cnt) cout << ans2[i].name << (i == cnt ? ".\n" : ", ");
sort(a + 1, a + n + 1, cmp3);
printf("If you want to go to a cafe with a wonderful girl, you should call: ");
tmp = a[1].girl, cnt = 0;
sort(a + 1, a + n + 1, cmpid);
F(i, 1, n) if(a[i].girl == tmp) ans3[++cnt] = a[i];
F(i, 1, cnt) cout << ans3[i].name << (i == cnt ? ".\n" : ", ");
return 0;
}

CF151B Phone Numbers 题解的更多相关文章

  1. CF55D Beautiful numbers 题解

    题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...

  2. Hdoj 1905.Pseudoprime numbers 题解

    Problem Description Fermat's theorem states that for any prime number p and for any integer a > 1 ...

  3. Hdoj 1058.Humble Numbers 题解

    Problem Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The ...

  4. [LeetCode] Add Two Numbers题解

    Add Two Numbers: You are given two non-empty linked lists representing two non-negative integers. Th ...

  5. poj 1995 Raising Modulo Numbers 题解

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: ...

  6. CF1265B Beautiful Numbers 题解

    Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...

  7. CF1157A-Reachable Numbers题解

    原题地址 题目大意:有一个函数\(f(x)\),效果是将\(x+1\)后,去掉末尾所有的\(0\),例如: \(f(599)=6\),因为\(599+1=600→60→6\) \(f(7)=8\),因 ...

  8. CF359D:Pair of Numbers——题解

    https://vjudge.net/problem/CodeForces-359D http://codeforces.com/problemset/problem/359/D 题目大意: 给一串数 ...

  9. Timus : 1002. Phone Numbers 题解

    把电话号码转换成为词典中能够记忆的的单词的组合,找到最短的组合. 我这道题应用到的知识点: 1 Trie数据结构 2 map的应用 3 动态规划法Word Break的知识 4 递归剪枝法 思路: 1 ...

随机推荐

  1. 【JavaSE】集合

    Java集合 2019-07-05  12:39:09  by冲冲 1. 集合的由来 通常情况下,程序直到运行时,才知道需要创建多少个对象.但在开发阶段,我们根本不知道到底需要多少个数量的对象,甚至不 ...

  2. 【Cloud Computing】Hadoop环境安装、基本命令及MapReduce字数统计程序

    [Cloud Computing]Hadoop环境安装.基本命令及MapReduce字数统计程序 1.虚拟机准备 1.1 模板机器配置 1.1.1 主机配置 IP地址:在学校校园网Wifi下连接下 V ...

  3. 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解

    1.填算式 (1)题目描述     请看下面的算式:     (ABCD - EFGH) * XY = 900     每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0.     比如 ...

  4. Codeforces 1236F - Alice and the Cactus(期望+分类讨论)

    Codeforces 题面传送门 & 洛谷题面传送门 期望好题. 首先拆方差: \[\begin{aligned} &E((x-E(x))^2)\\ =&E(x^2)-2E(x ...

  5. 【2020五校联考NOIP #6】最佳观影

    题意: 给出一个 \(k \times k\) 的网格和 \(n\) 次操作.其中 \(k\) 为奇数. 每次操作给出一个数 \(m\).每次你要找出一个三元组 \((x,l,r)\) 使得: \(r ...

  6. vector.erase();vector.clear();map.erase();

    vector::erase()返回下一个iter: STL中的源码: //清除[first, last)中的所有元素 iterator erase(iterator first, iterator l ...

  7. CentOS安装配置Hadoop 1.2.1(伪分布模式)

    CentOS安装配置Hadoop1.2.1 1.下载安装文件 下载2个安装文件 JAVA环境:jdk-6u21-linux-i586.bin Hadoop环境:hadoop-1.2.1.tar.gz ...

  8. 类成员函数调用delete this会发生什么呢?

    有如下代码 class myClass { public: myClass(){}; ~myClass(){}; void foo() { delete this; } }; int main() { ...

  9. 自然语言式parsing

    got NUM(1) Is NUM(1) an expr? Is NUM(1) a term? Is NUM(1) a number? is_term got -(-) -(-) was back i ...

  10. day13 装饰器与语法糖

    day13 装饰器与语法糖 一.装饰器 1.什么是装饰器 装饰器就是装饰别人的工具,具体是指为被装饰者添加新功能 装饰器->函数 被装饰者->函数 2.为何要用装饰器 装饰器的核心思想:( ...