LuoguB2105 矩阵乘法 题解
Content
给定一个 \(n\times m\) 的矩阵 \(A\) 和一个 \(m\times k\) 的矩阵 \(B\),求两个矩阵相乘得到的矩阵。
\(n\times m\) 的矩阵 \(A\) 和一个 \(m\times k\) 的矩阵 \(B\) 相乘会得到一个 \(n\times k\) 的矩阵 \(C\),并且有以下关系:
\]
数据范围:\(1\leqslant n,m\leqslant 100\)。
Solution
根据题意,我们先循环 \(i\),再循环 \(j\),最后在循环 \(p\),按照公式直接求 \(A_{i,p}\) 和 \(B_{p,j}\) 的和,加入 \(C_{i,j}\) 中即可得到 \(C\) 矩阵。
多提一嘴:当且仅当 \(A\) 矩阵的列数等于 \(B\) 矩阵的行数时,\(A\times B\) 才有意义。
Code
#include <cstdio>
using namespace std;
int n, m, k, a[107][107], b[107][107], c[107][107];
int main() {
scanf("%d%d%d", &n, &m, &k)
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%d", &a[i][j]);
for(int i = 1; i <= m; ++i) for(int j = 1; j <= k; ++j) scanf("%d", &b[i][j]);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) for(int l = 1; l <= k; ++l) c[i][j] += a[i][l] * b[l][j];
for(int i = 1; i <= n; ++i) {for(int j = 1; j <= k; ++j) printf("%d", c[i][j]); puts("");}
return 0;
}
LuoguB2105 矩阵乘法 题解的更多相关文章
- BZOJ2738:矩阵乘法——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2738 Description 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数 ...
- 【日常学习】codevs1287 矩阵乘法题解
转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看. 先上题目 题目描写叙述 Description 小明近期在为线性代数而头疼,线性代数确实非 ...
- P1962 斐波那契数列-题解(矩阵乘法扩展)
https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首 ...
- [模板][题解][Luogu1939]矩阵乘法加速递推(详解)
题目传送门 题目大意:计算数列a的第n项,其中: \[a[1] = a[2] = a[3] = 1\] \[a[i] = a[i-3] + a[i - 1]\] \[(n ≤ 2 \times 10^ ...
- 题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...
- poj3233 题解 矩阵乘法 矩阵快速幂
题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个 ...
- HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...
- hdu4920 Matrix multiplication 模3矩阵乘法
hdu4920 Matrix multiplication Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 ...
- Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)
1287 矩阵乘法 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 小明最近在为线性代数而头疼, ...
随机推荐
- 【Vue.js】SPA
SPA 2019-11-13 23:20:48 by冲冲 1.概念 (1)MPA(multi-page application) 特点:每一次页面跳转的时候,后台服务器都会返回一个新的html文档 ...
- springboot启动流程1
public SpringApplication(ResourceLoader resourceLoader, Class<?>... primarySources) { this.res ...
- Mac更换鼠标指针样式_ANI、CUR文件解析
前情提要 因为之前写了一篇mousecape的博客有一些回应,所以我决定写个续.主要是教大家怎么把cur文件和ani文件插入到mousecape里面,顺便提供几个做好的cape文件. 先给大家推荐一个 ...
- 【NOI 2002 银河英雄传说】【带权并查集】
题面 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集*在巴米利恩星域爆发战争.泰山压顶集 ...
- 【豆科基因组】小豆(红豆)adzuki bean, Vigna angularis基因组2015
目录 一.来源 研究一:Draft genome sequence of adzuki bean, Vigna angularis 研究二:Genome sequencing of adzuki be ...
- Python基础之流程控制for循环
目录 1. 语法 2. for+break 3. for+continue 4. for循环嵌套 1. 语法 while循环可以对任何内容循环,但循环次数不可控 for循环基于容器类型的长度,循环次数 ...
- 【模板】最小费用最大流(网络流)/洛谷P3381
题目链接 https://www.luogu.com.cn/problem/P3381 题目大意 输入格式 第一行包含四个正整数 \(n,m,s,t\),分别表示点的个数.有向边的个数.源点序号.汇点 ...
- JavaBean内省与BeanInfo
Java的BeanInfo在工作中并不怎么用到,我也是在学习spring源码的时候,发现SpringBoot启动时候会设置一个属叫"spring.beaninfo.ignore", ...
- C++11的auto自动推导类型
auto是C++11的类型推导关键字,很强大 例程看一下它的用法 #include<vector> #include<algorithm> #include<functi ...
- 写一个简单的AIDL
1.首先创建一个AIDL文件,并添加上两个接口.IMyAidlInterface.aidlpackage com.example.broadcastdemo;// Declare any non-de ...