python库--pandas--文本文件读取
.read_table() / read_csv() | |||
filepath_or_buffer | 文件路径 | ||
sep=’\t’ | 分隔符. 设置为N, 将尝试自动确定 | ||
delimiter=N | sep的备用参数名 | ||
header='infer' | int | 用作列名称的行号 | |
ints | 若传入列表则表示这几行都将作为列标签 | ||
None | 文件中不包含标题行 | ||
'infer' | header = 0 if name is None else None | ||
names=N | 作为列标签的列表 | ||
index_col=N | int | 用作行标签的列 | |
序列 | 使用MultiIndex | ||
F | 强制使用第一列作为索引 | ||
usecols=N | list_like: 要读取的列, 位置或列标签 | ||
squeeze=F | 若果解析的数据只有一列, 则返回一个Series | ||
prefix=N | 在没有标题时添加到列号的前缀,例如'X'代表X0,X1,... | ||
mangle_dupe_cols=T | 重复的列将被指定为”X”, "X.1"...“X.N”. 传入F将导致覆盖数据 | ||
dtype=N | 数据或每列数据类型. 例如:{'a':np.float64,'b':np.int32} | ||
engine=N | 选择解析器引擎. ‘c’引擎速度更快,而’python’引擎目前更加完善 | ||
converters=N | dict {key:fun(str)}. 转换某些列中的值的函数, 键是整数或列标签 | ||
true_values=N | list. 要考虑的值为True ??? | ||
false_values=N | list. 要考虑的值为False ??? | ||
skipinitialspace=F | 跳过分隔符后的空白符 | ||
skiprows=N | 要跳过的行号(list)或要跳过的行数(integer) | ||
nrows=N | 要读取的文件的行数. 适用于读取大文件的片段 | ||
na_values=N | 识别为NaN的字符串或字符串列表 | ||
keep_default_na=T | T设置的na_values追加到默认识别为NaN值的列表, 否则将覆盖默认 | ||
na_filter=T | 是否检测Na值, 在确定没有Na的数据中设置为F可提高读取大文件的性能 | ||
verbose=F | 是否显示每一列中的NA值的数量 |
||
skip_blank_lines=T | 如果为T, 则跳过空白行, 而不是解释为NaN值 | ||
parse_dates=F | True: 尝试将索引解析成日期 | ||
[位置或标签]: 尝试将这些列解析成日期 | |||
[[位置或标签]]: 合并这些列并尝试将其解析成日期 | |||
{name: [位置或标签]}: 合并指定列指定标签为name, 并尝试将其解析为日期 | |||
infer_datetime_format=F | True: 尝试加快parse_dates解析速度 | ||
keep_date_col=F | True: 若parse_dates解析成的日期列没有占用原数据标签, 则保留原始列 | ||
date_parser=N | 用于将字符串转换为datetime的函数, 默认dateutil.parser.parser | ||
dayfirst=F | True: 识别欧洲格式日期(日-月-年), 默认将识别为(月-日-年) | ||
iterator=F | 生成迭代器, 通过迭代或get_chunk()获取数据块(默认全部) | ||
chunksize=N | int: 生成迭代器, 通过迭代或get_chunk()每次获取此参数指定大小的数据块 | ||
compression='infer' | {'infer','gzip','bz2','zip','xz',None} 用于磁盘上数据的即时解压缩。如果“infer”,则使用gzip,bz2,zip或xz,如果filepath_or_buffer是分别以“.gz”, “.bz2”, “.zip”或“xz”结尾的字符串,否则不进行解压缩。如果使用'zip',ZIP文件必须只包含一个要读入的数据文件. 设置为无, 无解压缩 | ||
thousands=N | str: 千位分隔符, 默认无 | ||
decimal='.' | 可识别为小数点的字符 | ||
lineterminator=N | str(length 1) 将文件拆分成行的字符, 只有C解释器有效 | ||
quotechar='"' | str(length 1) 用于表示带引号项目的开始和结束的字符. 引号项可以包含分隔符, 它将被忽略 | ||
quoting=0 | 3: quotechar参数将不会生效 | ||
escapechar=N | ??? | ||
comment=N | str(length 1) 以此字符开头的行将被当做空白行处理 | ||
encoding=N | 编码 | ||
dialect=N | ??? | ||
tupleize_cols=F | 当选择多行作为列标签时, 默认生成多级索引, 若设置为True, 则会把多个索引组成元组作为单个标签 | ||
error_bad_lines=T | False: 异常行将被删除 | ||
warn_bad_lines=T | error_bad_lines为False, 且此参数为True, 将会输出每一个error行的警告 | ||
skipfooter=0 | 跳过文件底部的行数(不支持engine ='c') | ||
skip_footer=0 | 弃用, 使用skipfooter参数 | ||
doublequote=T | 将连续多个quotechar指定的字符当做一个来识别 | ||
delim_whitespace=F | 指定是否将空白用作分隔符, 相当于设置sep='\s+'. 若设为True, 则不应为delimiter参数传入任何内容(支持Python解释器) | ||
compact_ints=F | 将被删除 | ||
use_unsigned=F | 将被删除 | ||
low_memory=T | ??? | ||
buffer_lines=N | 将被删除 |
||
memory_map=F | 如果为filepath_or_buffer提供了文件路径,则将文件对象直接映射到内存上,并从中直接访问数据。使用此选项可以提高性能,因为不再有任何I / O开销 | ||
float_precision=N | ??? | ||
.read_fwf() | 读取固定宽度格式的文件 | ||
.read_msgpack() | ??? | ||
#s3gt_translate_tooltip_mini { display: none !important }
python库--pandas--文本文件读取的更多相关文章
- 三、Python系列——Pandas数据库读取数据
Pandas主要先读取表格类型的数据,然后进行分析. import pandas as pd# 由于是用pandas模块操作数据,因此不用在路径前加open,否则就是python直接打开文件,可能还会 ...
- python库pandas
由于在机器学习中经常以矩阵的方式来表现数据,那么我们就需要一种数据结构来存储和处理矩阵.pandas库就是这样一个工具. 本文档是一个学习笔记,记录一些常用的命令,原文:http://www.cnbl ...
- python库pandas简介
pandas是基于numpy的数据分析模块,提供了大量标准模型和高效操作大型数据集所需要的工具. pandas主要提供了3种数据结构:1.Series,带标签的一维数组:2.DataFrame,带标签 ...
- Python库-Pandas
Pandas是基于NumPy的一种数据分析工具,提供了大量使我们快速便捷处理数据的函数和方法. 中文官网地址:https://www.pypandas.cn Pandas基于两种数据类型:Series ...
- python 【pandas】读取excel、csv数据,提高索引速度
问题描述:数据处理,尤其是遇到大量数据且需要for循环处理时,需要消耗大量时间,如代码1所示.通过data['trip_time'][i]的方式会占用大量的时间 代码1 import time t0= ...
- 顶级Python库
绝不能错过的24个顶级Python库 Python有以下三个特点: · 易用性和灵活性 · 全行业高接受度:Python无疑是业界最流行的数据科学语言 · 用于数据科学的Python库的数量优势 事实 ...
- Python数据分析库pandas基本操作
Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- 教程 | 一文入门Python数据分析库Pandas
首先要给那些不熟悉 Pandas 的人简单介绍一下,Pandas 是 Python 生态系统中最流行的数据分析库.它能够完成许多任务,包括: 读/写不同格式的数据 选择数据的子集 跨行/列计算 寻找并 ...
- Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)
0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...
随机推荐
- ctf每周一练
buuctf misc: 你猜我是个啥 下载之后,是一个zip文件,解压,提示不是解压文件 放进HxD中进行分析,发现这是一个png文件,改后缀 打开后,发现是一张二维码,我们尝试用CQR进行扫描, ...
- 37岁Android程序员被裁员,面试大厂被拒,降薪去小公司,心更凉了
在职场论坛看到这样一个帖子,程序员小A被前公司裁员了,裁员之后也并没有特别气馁,打算重头再来,结果却被现实打击到了. 他大学毕业的时候进入到一家知名互联网公司上班,工作期间,也是不断学习,提升自己的能 ...
- Java线程基础及多线程的实现
一.进程和线程 1.进程:正在运行的程序 是系统进行资源分配和调用的独立单位 每一个进程都有它自己的内存空间和系统资源 2.线程是进程中的单个顺序控制流,是一条执行路径 ...
- 【LeetCode】316. 去除重复字母
316. 去除重复字母 知识点:栈:单调 题目描述 给你一个字符串 s ,请你去除字符串中重复的字母,使得每个字母只出现一次.需保证 返回结果的字典序最小(要求不能打乱其他字符的相对位置). 示例 输 ...
- 保存Total Commander的列宽
Total Commander的默认列宽经常显示不全内容,需要手工调整,用"Menu -> Configuration -> Save Position"可以永久保存列 ...
- WPF MVVM模式下路由事件
一,路由事件下三种路由策略: 1 冒泡:由事件源向上传递一直到根元素.2直接:只有事件源才有机会响应事件.3隧道:从元素树的根部调用事件处理程序并依次向下深入直到事件源.一般情况下,WPF提供的输入事 ...
- 【笔记】集成学习入门之soft voting classifier和hard voting classifier
集成学习入门之soft voting classifier和hard voting classifier 集成学习 通过构建并结合多个学习器来完成学习任务,一般是先产生一组"个体学习器&qu ...
- go配置私有仓库 (go mod配置私有仓库)
windows 配置go私有仓库 一.环境 1.私有gitlab (gitlab.xxx.com) 2.go 1.16.3 3.win10系统, 家目录:C:\Users\Administrator, ...
- kubernetes/k8s CNI分析-容器网络接口分析
关联博客:kubernetes/k8s CSI分析-容器存储接口分析 kubernetes/k8s CRI分析-容器运行时接口分析 概述 kubernetes的设计初衷是支持可插拔架构,从而利于扩展k ...
- Linux搭建Ldap服务器
一,服务器安装 yum install -y openldap openldap-clients openldap-servers migrationtools 二,配置ldap服务器 2.1配置ld ...