最小生成树Kruskal算法(1)
概念
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。
通俗一点,就是把一个图,削成一个树,要让这颗树权值最小
思路(kruskal)
kruskal算法的基本思路就是,把所有的边以权值为关键字排序,然后,依次将一个一个点放入最小生成树中
如果,这个点已经有了,那我们就直接跳过 是不是很简单
因为搜索是否已经放入可以用dfs或bfs来查找,这样的时间很长,所以,要使用并查集,就是把最小生成树的每一个结点放入一个并查集,可以更加简便地查找
*** 必需是连通图 ***
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz。
输入格式
第一行包含两个整数 N,MN,M,表示该图共有 NN 个结点和 MM 条无向边。
接下来 MM 行每行包含三个整数 X_i,Y_i,Z_iX
表示有一条长度为 Z_iZ
的无向边连接结点 X_i,Y_iX
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz。
输入输出样例
输入 #1复制
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出 #1复制
7
说明/提示
数据规模:
对于 20%20% 的数据,N\le 5N≤5,M\le 20M≤20。
对于 40%40% 的数据,N\le 50N≤50,M\le 2500M≤2500。
对于 70%70% 的数据,N\le 500N≤500,M\le 10^4M≤10
对于 100%100% 的数据:1\le N\le 50001≤N≤5000,1\le M\le 2\times 10^51≤M≤2×10
所以最小生成树的总边权为 2+2+3=72+2+3=7。
题目分析
最小生成树模板题
代码
#include<bits/stdc++.h>
using namespace std;
int fa[5005];
int n;
int m;
int x,y,e;
int tot=0;
int ans=0;
bool flag=1;
struct edge{
int u,v,w;
}g[200005];
bool cmp(edge x,edge y)
{
return x.w<y.w;
}
void Make()
{
for(int i=1;i<=n;i++)
{
fa[i]=i;
}
return ;
}
int find(int x)
{
if(fa[x] == x)
return x;
else
return find(fa[x]);
}
void unionn(int i, int j)
{
fa[find(i)] = find(j);
return ;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&e);
g[i].u=x;
g[i].v=y;
g[i].w=e;
}
sort(g+1,g+1+m,cmp);
Make();
for(int i=1;i<=m;i++)
{
if(find(g[i].u)!=find(g[i].v))
{
unionn(g[i].u, g[i].v);
tot++;
ans+=g[i].w;
}
if(tot==n-1)
{
break;
}
}
printf("%d",ans);
}
最小生成树Kruskal算法(1)的更多相关文章
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
- 最小生成树------Kruskal算法
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...
- 求最小生成树——Kruskal算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
- 算法实践--最小生成树(Kruskal算法)
什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 数据结构之最小生成树Kruskal算法
1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...
- 数据结构:最小生成树--Kruskal算法
Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...
随机推荐
- NSURLSession实现文件上传
7.1 涉及知识点(1)实现文件上传的方法 /* 第一个参数:请求对象 第二个参数:请求体(要上传的文件数据) block回调: NSData:响应体 NSURLResponse:响应头 NSErro ...
- hash 模式与 history 模式小记
hash 模式 这里的 hash 就是指 url 后的 # 号以及后面的字符.比如说 "www.baidu.com/#hashhash" ,其中 "#hashhash&q ...
- Spring Boot对日志的控制
一.logback日志技术介绍 Spring Boot中使用的日志技术为logback.其与Log4J都出自同一人,性能要优于Log4J,是Log4J的替代者. 在Spring Boot中若要使用lo ...
- contrller层的编码设设计流程以及详细配置
/** 实际开发中遵循一个规律:自己写的类使用注解,系统提供的类使用配置文件 1.书写controller类----->配置springmvc.xml-------->配置web ...
- 初步接触Linux命令
目录 虚拟机快照 1.首先将已经运行的系统关机 2.找到快照 拍摄快照 3.找到克隆 下一步 有几个快照会显示几个 4.克隆完成后 要修改一下IP 不然无法同时运行两个虚拟机系统 系统介绍 1.pin ...
- centos7源码安装Nginx-1.6
目录 一.环境介绍 二.安装 三.使用验证 四.附录 编译参数详解 一.环境介绍 nginx的版本功能相差不大,具体支持可以查看官网的功能列表 环境信息: [nginx-server] 主机名:hos ...
- 【划重点】Python pandas简介
一.pandas获取Excel表单的两种方式 import pandas as pd df1 = pd.DataFrame(pd.read_excel(r'C:\Users\ASUS\Desktop\ ...
- java 多线程:Thread类;Runnable接口
1,进程和线程的基本概念: 1.什么是进程: 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机 ...
- react中使用Input表单双向绑定方法
input react 表单 input 密码框在谷歌浏览器下 会有黄色填充 官网的不太用,这个比较好用 type="password" autoComplete="ne ...
- JAVA通过正则匹配html里面body标签的内容,去掉body标签
/** * 获取html中body的内容 包含body标签 * @param htmlStr html代码 * @return */ public static String getBody(Stri ...