最小生成树Kruskal算法(1)
概念
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。
通俗一点,就是把一个图,削成一个树,要让这颗树权值最小
思路(kruskal)
kruskal算法的基本思路就是,把所有的边以权值为关键字排序,然后,依次将一个一个点放入最小生成树中
如果,这个点已经有了,那我们就直接跳过 是不是很简单
因为搜索是否已经放入可以用dfs或bfs来查找,这样的时间很长,所以,要使用并查集,就是把最小生成树的每一个结点放入一个并查集,可以更加简便地查找
*** 必需是连通图 ***
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz。
输入格式
第一行包含两个整数 N,MN,M,表示该图共有 NN 个结点和 MM 条无向边。
接下来 MM 行每行包含三个整数 X_i,Y_i,Z_iX
表示有一条长度为 Z_iZ
的无向边连接结点 X_i,Y_iX
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz。
输入输出样例
输入 #1复制
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出 #1复制
7
说明/提示
数据规模:
对于 20%20% 的数据,N\le 5N≤5,M\le 20M≤20。
对于 40%40% 的数据,N\le 50N≤50,M\le 2500M≤2500。
对于 70%70% 的数据,N\le 500N≤500,M\le 10^4M≤10
对于 100%100% 的数据:1\le N\le 50001≤N≤5000,1\le M\le 2\times 10^51≤M≤2×10
所以最小生成树的总边权为 2+2+3=72+2+3=7。
题目分析
最小生成树模板题
代码
#include<bits/stdc++.h>
using namespace std;
int fa[5005];
int n;
int m;
int x,y,e;
int tot=0;
int ans=0;
bool flag=1;
struct edge{
int u,v,w;
}g[200005];
bool cmp(edge x,edge y)
{
return x.w<y.w;
}
void Make()
{
for(int i=1;i<=n;i++)
{
fa[i]=i;
}
return ;
}
int find(int x)
{
if(fa[x] == x)
return x;
else
return find(fa[x]);
}
void unionn(int i, int j)
{
fa[find(i)] = find(j);
return ;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&e);
g[i].u=x;
g[i].v=y;
g[i].w=e;
}
sort(g+1,g+1+m,cmp);
Make();
for(int i=1;i<=m;i++)
{
if(find(g[i].u)!=find(g[i].v))
{
unionn(g[i].u, g[i].v);
tot++;
ans+=g[i].w;
}
if(tot==n-1)
{
break;
}
}
printf("%d",ans);
}
最小生成树Kruskal算法(1)的更多相关文章
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
- 最小生成树------Kruskal算法
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...
- 求最小生成树——Kruskal算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
- 算法实践--最小生成树(Kruskal算法)
什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 数据结构之最小生成树Kruskal算法
1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...
- 数据结构:最小生成树--Kruskal算法
Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...
随机推荐
- python爬虫期末复习
python期末复习 选择题 以下选项中合法的是(A). A 爬取百度的搜索结果 B 爬取淘宝的商品数据 C 出售同学的个人信息 D 为高利贷提供技术服务 网站的根目录下有一个文件告诉爬虫哪些内容可以 ...
- Mysql资料 慢查询
目录 一.简介 二.查询 三.开启 永久配置 临时配置 四.测试 一.简介 MySQL的慢查询,全名是慢查询日志,是MySQL提供的一种日志记录,用来记录在MySQL中响应时间超过阀值的语句. 具体环 ...
- 安装Google BBR加速
目录 一.简介 二.安装 三.设置BBR 一.简介 Google BBR 是一款免费开源的TCP拥塞控制传输控制协议, 可以使Linux服务器显著提高吞吐量和减少TCP连接的延迟. 二.安装 1.yu ...
- ios获取文件MD5值
一般我们在使用http或者socket上传或者下载文件的时候,经常会在完成之后经行一次MD5值得校验(尤其是在断点续传的时候用的更 多),校验MD5值是为了防止在传输的过程当中丢包或者数据包被篡改,在 ...
- AT2202 硬度フェスティバル / Kode Festival 题解
Content 有 \(2^n\) 块石头,第 \(i\) 块石头硬度为 \(a_i\).重复执行以下操作直到只剩下一块石头为止: 让当前编号为 \((1,2)\).\((3,4)\).-- 的石头互 ...
- 当是class com.cosl.po.Pc$$EnhancerByCGLIB$$38c58f03时,反射属性都他妈不好用了
当是class com.cosl.po.Pc$$EnhancerByCGLIB$$38c58f03时,反射属性都他妈不好用了 搞不懂为什么?
- Solon,一个轻量级的应用开发框架。发布官网喽!!!
官网发布: https://solon.noear.org/ 项目简介: Solon,是一个轻量级的应用开发框架.更快.更小.更自由! 支持JDK8+:主框架0.1Mb:组合不同的插件应对不同需求:方 ...
- 使用Nginx配置资源目录展示下载
nginx配置文件 server { listen 8080; server_name localhost; charset utf-8; location /download { #下载的资源目录 ...
- SpringBoot 整合MinIO
引入依赖 <dependency> <groupId>io.minio</groupId> <artifactId>minio</artifact ...
- 【LeetCode】1181. Before and After Puzzle 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 保存首尾字符串 日期 题目地址:https://lee ...