TensorRT深度学习训练和部署

NVIDIA TensorRT是用于生产环境的高性能深度学习推理库。功率效率和响应速度是部署的深度学习应用程序的两个关键指标,因为它们直接影响用户体验和所提供服务的成本。Tensor RT自动优化训练好的神经网络,以提高运行时性能,与仅使用通用CPU的深度学习推理系统相比,Tesla P100 GPU的能源效率(每瓦性能)提高多达16倍(见图1)。图2显示了使用TensorRT和相对复杂的GoogLenet神经网络架构运行NVIDIA Tesla P100和K80进行推理的性能。

本文将展示如何使用Tensor RT,在基于GPU的部署平台上,从经过训练的深度神经网络中,获得最佳效率和性能。

图1:NVIDIA Tensor RT通过Tesla P100上的FP16,为神经网络推理提供了16倍的高能效。

图2:NVIDIA Tensor RT通过Tesla P100上的FP16提供了23倍的神经网络推理性能。

用深度神经网络解决有监督的机器学习问题,涉及两个步骤。

  1. 第一步是使用GPU在大量标记数据上训练深度神经网络。在此步骤中,神经网络学习了数百万个权重或参数,从而使其能够映射输入数据示例,以纠正响应。训练要求迭代前后遍历网络,因为相对于网络权重,目标函数被最小化了。通常会对几种模型进行训练,并针对训练期间未看到的数据验证准确性,以便估算实际性能。
  2. 下一步-推论-使用训练好的模型对新数据进行预测。在此步骤中,训练好的模型,用于在生产环境中运行的应用程序,例如数据中心,汽车或嵌入式平台。对于某些应用,例如自动驾驶,推理是实时进行的,因此高吞吐量至关重要。

TensorRT深度学习训练和部署图示的更多相关文章

  1. 基于NVIDIA GPUs的深度学习训练新优化

    基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...

  2. MLPerf结果证实至强® 可有效助力深度学习训练

    MLPerf结果证实至强 可有效助力深度学习训练 核心与视觉计算事业部副总裁Wei Li通过博客回顾了英特尔这几年为提升深度学习性能所做的努力. 目前根据英特尔 至强 可扩展处理器的MLPerf结果显 ...

  3. 中文译文:Minerva-一种可扩展的高效的深度学习训练平台(Minerva - A Scalable and Highly Efficient Training Platform for Deep Learning)

    Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 ...

  4. java web应用调用python深度学习训练的模型

    之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用p ...

  5. 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...

  6. 深度学习环境搭建部署(DeepLearning 神经网络)

    工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...

  7. 一天搞懂深度学习-训练深度神经网络(DNN)的要点

    前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...

  8. 【神经网络与深度学习】Caffe部署中的几个train-test-solver-prototxt-deploy等说明

    1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正 ...

  9. 深度学习 | 训练网络trick——mixup

    1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签.最终对标签的处理如下公式所示,这很简单 ...

随机推荐

  1. html书签展示(带搜索)

    源代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title ...

  2. Win64 驱动内核编程-19.HOOK-SSDT

    HOOK SSDT 在 WIN64 上 HOOK SSDT 和 UNHOOK SSDT 在原理上跟 WIN32 没什么不同,甚至说 HOOK 和 UNHOOK 在本质上也没有不同,都是在指定的地址上填 ...

  3. 狂神说Elasticsearch7.X学习笔记整理

    Elasticsearch概述 一.什么是Elasticsearch? Lucene简介 Lucene是一套用于全文检索和搜寻的开源程序库,由Apache软件基金会支持和提供 Lucene提供了一个简 ...

  4. 死磕Spring之AOP篇 - Spring 事务详解

    该系列文章是本人在学习 Spring 的过程中总结下来的,里面涉及到相关源码,可能对读者不太友好,请结合我的源码注释 Spring 源码分析 GitHub 地址 进行阅读. Spring 版本:5.1 ...

  5. ElasticSearch第三弹之存储原理

    我们上文中介绍的ES内部索引的写处理流程是在ES的内存中执行的,而数据被分配到特定的主.副分片上之后,最终是存储到磁盘上的,这样在断电的时候就不会丢失数据.具体的存储路径可在配置文件 ../confi ...

  6. Eclipse中System.out.println()快捷键生成方法

    输入syso,再按ALT+/,如果不显示,就在输入完整一行   System.out.println();  之后点击5次shift键,显示是否使用粘滞键,点击是,  再输入sout,再按ALT+/ ...

  7. 转: inline关键字使用

    1.inline用在函数声明时,还是函数定义时?还是两边都加? 首先,内联函数声明和定义最好在同一个文件中,其它的情况没有实用上的意义. 只要在同一个文件中,声明和定义至少其一加"inlin ...

  8. x265编码命令

    CQP: #/bin/bash ./x265 --input FourPeople_1280x720_60.yuv --input-res 1280x720 --fps 60 --qp 40 --fr ...

  9. Beta——发布声明

    Beta阶段 1. 新功能: 介绍页面 用户点击软件右上角的 ? 按钮即可看到软件的操作说明! 项目模式 目前软件支持三种模式 空白表单模式.该模式可以生成基于模板的表单数据,也支持生成数据直接训练模 ...

  10. ZOHO的下一个25年:用心为企业服务

    来源:中国软件网 作者:海策 在25周年会上,ZOHO大中华区总裁侯康宁先生豪情壮志,"25岁的ZOHO,已经成长为非典型一线大厂." 1996年,ZOHO成立.截止2021年,Z ...