TensorRT深度学习训练和部署

NVIDIA TensorRT是用于生产环境的高性能深度学习推理库。功率效率和响应速度是部署的深度学习应用程序的两个关键指标,因为它们直接影响用户体验和所提供服务的成本。Tensor RT自动优化训练好的神经网络,以提高运行时性能,与仅使用通用CPU的深度学习推理系统相比,Tesla P100 GPU的能源效率(每瓦性能)提高多达16倍(见图1)。图2显示了使用TensorRT和相对复杂的GoogLenet神经网络架构运行NVIDIA Tesla P100和K80进行推理的性能。

本文将展示如何使用Tensor RT,在基于GPU的部署平台上,从经过训练的深度神经网络中,获得最佳效率和性能。

图1:NVIDIA Tensor RT通过Tesla P100上的FP16,为神经网络推理提供了16倍的高能效。

图2:NVIDIA Tensor RT通过Tesla P100上的FP16提供了23倍的神经网络推理性能。

用深度神经网络解决有监督的机器学习问题,涉及两个步骤。

  1. 第一步是使用GPU在大量标记数据上训练深度神经网络。在此步骤中,神经网络学习了数百万个权重或参数,从而使其能够映射输入数据示例,以纠正响应。训练要求迭代前后遍历网络,因为相对于网络权重,目标函数被最小化了。通常会对几种模型进行训练,并针对训练期间未看到的数据验证准确性,以便估算实际性能。
  2. 下一步-推论-使用训练好的模型对新数据进行预测。在此步骤中,训练好的模型,用于在生产环境中运行的应用程序,例如数据中心,汽车或嵌入式平台。对于某些应用,例如自动驾驶,推理是实时进行的,因此高吞吐量至关重要。

TensorRT深度学习训练和部署图示的更多相关文章

  1. 基于NVIDIA GPUs的深度学习训练新优化

    基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...

  2. MLPerf结果证实至强® 可有效助力深度学习训练

    MLPerf结果证实至强 可有效助力深度学习训练 核心与视觉计算事业部副总裁Wei Li通过博客回顾了英特尔这几年为提升深度学习性能所做的努力. 目前根据英特尔 至强 可扩展处理器的MLPerf结果显 ...

  3. 中文译文:Minerva-一种可扩展的高效的深度学习训练平台(Minerva - A Scalable and Highly Efficient Training Platform for Deep Learning)

    Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 ...

  4. java web应用调用python深度学习训练的模型

    之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用p ...

  5. 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...

  6. 深度学习环境搭建部署(DeepLearning 神经网络)

    工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...

  7. 一天搞懂深度学习-训练深度神经网络(DNN)的要点

    前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...

  8. 【神经网络与深度学习】Caffe部署中的几个train-test-solver-prototxt-deploy等说明

    1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正 ...

  9. 深度学习 | 训练网络trick——mixup

    1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签.最终对标签的处理如下公式所示,这很简单 ...

随机推荐

  1. python 自动化审计

    基于python的自动化代码审计 代码审计 逢魔安全实验室   2018-02-11  10,539   本文通过介绍在python开发中经常出现的常规web漏洞,然后通过静态和动态两种方式对pyth ...

  2. hdu 1044 BFS(压缩图)+DFS

    题意:              给你起点,终点,图上有墙有路还有宝物,问你在规定时间内能否能到终点,如果能问最多能捡到多少宝物. 思路:           看完这个题目果断 BFS+三维的mark ...

  3. 淘宝欺骗病毒的鉴定--TaBAccelerate.dll

    样本名称:TaBAccelerate.dll 样本大小:1135104 字节 样本MD5:7AEF6EEECB37685D17F3D9BD76FA9EA0 样本SHA1: EB1E5ABA7C3797 ...

  4. POJ 3301 三分(最小覆盖正方形)

    题意:      给你n个点,让你找一个最小的正方形去覆盖所有点.思路:       想一下,如果题目中规定正方形必须和x轴平行,那么我们是不是直接找到最大的x差和最大的y差取最大就行了,但是这个题目 ...

  5. Windows中动态磁盘管理

    目录 动态磁盘 基本磁盘和动态磁盘的转换 简单卷 跨区卷 带区卷 镜像卷 RAID-5卷 相关文章:硬盘分区形式(MBR.GPT).系统引导.文件系统.Inode和Block 动态磁盘 Windows ...

  6. 基于MXNET框架的线性回归从零实现(房价预测为例)

    1.基于MXNET框架的线性回归从零实现例子 下面博客是基于MXNET框架下的线性回归从零实现,以一个简单的房屋价格预测作为例子来解释线性回归的基本要素.这个应用的目标是预测一栋房子的售出价格(元). ...

  7. 基于queue的python多进程日志管理

    在我们的异常检测应用中,需要对每组IoT设备分别训练一个模型,每个模型对一组设备的指标数据进行实时异常检测.方案采用master-worker+消息队列的方式实现模型对外服务,但是每个worker的日 ...

  8. 使用TK框架中updateByPrimaryKey与updateByPrimaryKeySelective区别

    int updateByPrimaryKey(T var1); int updateByPrimaryKeySelective(T var1); updateByPrimaryKeySelective ...

  9. GDI编程基础

    窗口和视口 视口是基于设备的采用的是设备坐标(单位:像素),窗口是基于程序的采用的是逻辑坐标(单位:像素/毫米/厘米等). 在默认的映射模式下,视口是与窗口等同的.但是如果改变其映射模式,则其对应的单 ...

  10. Linux上的Shebang符号(#!)

    使用Linux或者unix系统的同学可能都对#!这个符号并不陌生,但是你真的了解它吗? 本文了将给你简单介绍一下Shebang("#!")这个符号. 首先,这个符号(#!)的名称, ...