Dr. Tuple is working on the new data-mining application for Advanced Commercial Merchandise Inc. One of the subroutines for this application works with two arrays P and Q containing N records of data each (records are numbered from 0 to N − 1). Array P contains hash-like structure with keys. Array P is used to locate record for processing and the data for the corresponding record is later retrieved from the array Q.

  All records in array P have a size of SP bytes and records in array Q have size of SQ bytes. Dr. Tuple needs to implement this subroutine with the highest possible performance because it is a hot-spot of the whole data-mining application. However, SP and SQ are only known at run-time of application which complicates or makes impossible to make certain well-known compile-time optimizations.

  The straightforward way to find byte-offset of i-th record in array P is to use the following formula:

                Pofs(i) = SP · i, (1)

and the following formula for array Q:

                 Qofs(i) = SQ · i. (2)

  However, multiplication computes much slower than addition or subtraction in modern processors. Dr. Tuple avoids usage of multiplication while scanning array P by keeping computed byte-offset Pofs(i) of i-th record instead of its index i in all other data-structures of data-mining application. He uses the following simple formulae when he needs to compute byte-offset of the record that precedes or follows i-th record in array P:

                Pofs(i + 1) = Pofs(i) + SP

                Pofs(i − 1) = Pofs(i) − SP

  Whenever a record from array P is located by either scanning of the array or by taking Pofs(i) from other data structures, Dr. Tuple needs to retrieve information from the corresponding record in array Q. To access record in array Q its byte-offset Qofs(i) needs to be computed. One can immediately derive formula to compute Qofs(i) with known Pofs(i) from formulae (1) and (2):

                 Qofs(i) = Pofs(i)/SP · SQ (3)

  Unfortunately, this formula not only contains multiplication, but also contains division. Even though only integer division is required here, it is still an order of magnitude slower than multiplication on modern processors. If coded this way, its computation is going to consume the most of CPU time in data-mining application for ACM Inc.

  After some research Dr. Tuple has discovered that he can replace formula (3) with the following fast formula:

​ Qofs’(i) = (Pofs(i) + Pofs(i) << A) >> B (4)

  where A and B are non-negative integer numbers, “<< A” is left shift by A bits (equivalent to integer multiplication by 2A), “ >> B” is right shift by B bits (equivalent to integer division by 2B).

  This formula is an order of magnitude faster than (3) to compute, but it generally cannot always produce the same result as (3) regardless of the choice for values of A and B. It still can be used if one is willing to sacrifice some extra memory.

  Conventional layout of array Q in memory (using formula (2)) requires N · SQ bytes to store the entire array. Dr. Tuple has found that one can always choose such K that if he allocates K bytes of memory for the array Q (where KN ·SQ) and carefully selects values for A and B, the fast formula (4) will give non-overlapping storage locations for each of the N records of array Q.

  Your task is to write a program that finds minimal possible amount of memory K that needs to be allocated for array Q when formula (4) is used. Corresponding values for A and B are also to be found. If multiple pairs of values for A and B give the same minimal amount of memory K, then the pair where A is minimal have to be found, and if there is still several possibilities, the one where B is minimal. You shall assume that integer registers that will be used to compute formula (4) are wide enough so that overflow will never occur.

Input

  Input consists of several datasets. Each dataset consists of three integer numbers N, SP, and SQ separated by spaces (1 ≤ N ≤ 2^20,1 ≤ SP ≤ 2^10,1 ≤ SQ ≤ 2^10).

Output

  For each dataset, write to the output file a single line with three integer numbers K, A, and B separated by spaces.

Sample Input

20 3 5

1024 7 1

Sample Output

119 0 0

1119 2 5

HINT

   这个题是参照vj上下面评论的一个大佬写的,虽然想到了等差之类的,但没有想到k的取值公式。这个题从公式上面看可以知道是一个等差公式,那么要保证映射后的下标不会出现位置重复那么公差就必须(p + (p << i)) >> j)/q大于1,否则,比如1和1.2和1.8转换为整数后都是1,那么当公差大于1的话,计算出来的每一个下标比前一个都大于1就不会出现重复的现象。

  下一个要解决的问题就是如何来表示k的取值,因为每一个映射的下标都不会重复,那么最后一个最大的映射之后获得的也是最大的就是k的值,然后每一次比较获得更小的一个。因此比较公式就是(p * (n - 1) + ((p * (n - 1)) << i)) >> j) + q。最后一个是n-1,不是n,0......n-1。另外需要注意的是位运算符的优先级以及int 范围的k很可能会越界。下面是代码:

Accepted

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h> int main()
{
long long int n, p, q;
while (scanf("%lld %lld %lld", &n, &p, &q) != EOF)
{
long long int k = 9223372036854775807;
int a, b;
for (int i = 0;i < 32;i++)
{
for (int j = 0;j < 32;j++)
{
if ((p + (p << i)) >> j >= q && (k > ((p * (n - 1) + ((p * (n - 1)) << i)) >> j) + q))
{
k = ((p * (n - 1) + ((p * (n - 1)) << i)) >> j) + q;
a = i;b = j;
}
}
}
printf("%lld %d %d\n", k, a, b);
}
}

Data Mining UVA - 1591的更多相关文章

  1. Distributed Databases and Data Mining: Class timetable

    Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...

  2. What is the most common software of data mining? (整理中)

    What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...

  3. What’s the difference between data mining and data warehousing?

    Data mining is the process of finding patterns in a given data set. These patterns can often provide ...

  4. A web crawler design for data mining

    Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...

  5. Datasets for Data Mining and Data Science

    https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...

  6. cluster analysis in data mining

    https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...

  7. Weka 3: Data Mining Software in Java

    官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...

  8. data mining,machine learning,AI,data science,data science,business analytics

    数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...

  9. 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?

    本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...

随机推荐

  1. 在 TKE 中使用 Velero 迁移复制集群资源

    概述 Velero(以前称为Heptio Ark)是一个开源工具,可以安全地备份和还原,执行灾难恢复以及迁移 Kubernetes 群集资源和持久卷,可以在 TKE 集群或自建 Kubernetes ...

  2. 微信的两种access_token总结,不能混淆

    大家需要弄清楚微信的网页授权token和公众号api调用授权token. 1.网页授权access_token 1.有效期:7200ms 2.微信网页授权是通过OAuth2.0机制实现的,在用户授权给 ...

  3. Go的数组

    目录 数组 一.数组的定义 1.声明数组 2.初始化设值 3.指定位置设值 4.不指定长度初始化(了解) 二.数组的使用 三.数组的类型 四.数组的长度 五.迭代数组 1.初始化迭代 2.使用rang ...

  4. .NET并发编程-数据并行

    本系列学习在.NET中的并发并行编程模式,实战技巧 内容目录 数据并行Fork/Join模式PLINQ 本小节开始学习数据并行的概念模式,以及在.NET中数据并行的实现方式.本系列保证最少代码呈现量, ...

  5. Pyqt5实现model/View,解决tableView出现空白行问题。

    项目中表格需要显示5万条数据以上,并且实时刷新.开始使用的tableWidget,数据量一大显得力不从心,所以使用Qt的Model/View来重新实现.下面是更改之前编写的小Demo. import ...

  6. jq日期与时间戳互相转换

    方法1:$.extend({ myTime: { CurTime: function () { return Date.parse(new Date()) / 1000; }, DateToUnix: ...

  7. CCF(引水入城:60分):最大流+ISAP算法

    引水入城 201703-5 这从题目分析来看很像最大流的问题,只需要增加一个超级源点和一个超级汇点就可以按照题意连边再跑最大流算法. 因为数据量太大了,肯定会超时.但是没有想到可行的解决方法. #in ...

  8. 【转载】KMP入门级别算法详解--终于解决了(next数组详解)

    [转载]https://blog.csdn.net/LEE18254290736/article/details/77278769 对于正常的字符串模式匹配,主串长度为m,子串为n,时间复杂度会到达O ...

  9. Spring笔记(10) - 日志体系

    一.概况 在项目开发当中,日志对于我们开发或运维人员来说,是一个必不可少的工具.在线下我们可以通过 debug 来查找排除问题,但对于线上系统来说,我们只能通过日志分析来查找问题,我们可以通过日志打印 ...

  10. 「视频小课堂」ELK和Kafka是怎么就玩在一起成了日志采集解决方案文字版

    视频地址:ELK和Kafka是怎么就玩在一起成了日志采集解决方案 视频文字版 今天呢我就带来了一期视频,主要就是讲ELK和Kafka之间的通讯关系通过对一张通讯图,和一些操作命令,让我们能更深入的去理 ...