The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

Given any two nodes in a binary tree, you are supposed to find their LCA.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

Output Specification:

For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

Sample Input:

6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99
 

Sample Output:

LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

题意:

根据先序遍历和中序遍历的结果,构建一棵二叉树,然后,在这颗二叉树中查找两个结点的最近公共祖先节点。

思路:

题目可以分成两部分组成

1. 先根据前序和中序构建一棵二叉树。

  构建二叉树的时候采用递归的方式进行构建,根节点root在preorder中进行查找,再根据root在inorder中的位置确定左右子树中的节点个数。左子树的根节点就是其父节点root在preorder中的下标tag+1,右子树的根节点为tag + pos + 1,(pos为root在inorder中的下标)。递归跳出的条件是 start > end || tag >= inorder.size()。

2. 在在二叉树中查找两个结点的公共祖先节点。

  https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-tree/comments/

Code:

#include<iostream>
#include<vector>
#include<set> using namespace std; typedef struct Node* node; struct Node {
int val;
node left;
node right; Node() {
val = 0;
left = NULL;
right = NULL;
} Node(int v) {
val = v;
left = NULL;
right = NULL;
}
}; vector<int> inorder, preorder;
int tag = 0; node buildTree(int start, int end, int tag) {
if (start >= end || tag >= inorder.size()) return NULL;
int val = preorder[tag];
node root = new Node(val);
int lend, rstart, pos;
for (int i = 0; i < inorder.size(); ++i) {
if (inorder[i] == val) {
pos = i;
break;
}
}
lend = pos - 1;
rstart = pos + 1;
root->left = buildTree(start, lend, tag+1);
root->right = buildTree(rstart, end, tag+pos+1);
return root;
} node lowestCommonAncestor(node root, int n1, int n2) {
if (!root || root->val == n1 || root->val == n2) return root;
node left = lowestCommonAncestor(root->left, n1, n2);
node right = lowestCommonAncestor(root->right, n1, n2);
return !left ? right : !right ? left : root;
} int main() {
int m, n, t;
cin >> m >> n; set<int> s;
for (int i = 0; i < n; ++i) {
cin >> t;
inorder.push_back(t);
s.insert(t);
}
for (int i = 0; i < n; ++i) {
cin >> t;
preorder.push_back(t);
} node root = buildTree(0, n-1, 0); for (int i = 0; i < m; ++i) {
int n1, n2;
cin >> n1 >> n2;
if (s.find(n1) != s.end() && s.find(n2) != s.end()) {
node lca = lowestCommonAncestor(root, n1, n2);
int v = lca->val;
if (v == n1) {
cout << n1 << " is an ancestor of " << n2 << "." << endl;
} else if (v == n2) {
cout << n2 << " is an ancestor of " << n1 << "." << endl;
} else {
cout << "LCA of " << n1 << " and " << n2 << " is " << v << "." << endl;
}
} else if (s.find(n1) != s.end()) {
cout << "ERROR: " << n2 << " is not found." << endl;
} else if (s.find(n2) != s.end()) {
cout << "ERROR: " << n1 << " is not found." << endl;
} else {
cout << "ERROR: " << n1 << " and " << n2 << " are not found." << endl;
} } return 0;
}

最后还是有一组数据没有通过。


建树的时候一定要注意小标的问题。

 1 #include <bits/stdc++.h>
2
3 using namespace std;
4
5 typedef struct Node* node;
6
7 struct Node {
8 int val;
9 node left;
10 node right;
11 Node(int v) {
12 val = v;
13 left = NULL;
14 right = NULL;
15 }
16 };
17
18 vector<int> inOrder, preOrder;
19
20 node buildTree(int inl, int inr, int prel, int prer) {
21 // cout << prel << " " << prer << endl;
22 if (prel > prer || inl > inr) return NULL;
23 node root = new Node(preOrder[prel]);
24 int pos = 0;
25 for (int i = inl; i <= inr; ++i) {
26 if (inOrder[i] == preOrder[prel]) {
27 pos = i;
28 break;
29 }
30 }
31 int leftLen = pos - inl;
32 // cout << rightLen << " " << leftLen << endl;
33 root->left = buildTree(inl, pos - 1, prel + 1, prel + leftLen);
34 root->right = buildTree(pos + 1, inr, prel + leftLen + 1, prer);
35 return root;
36 }
37
38 node LCA(node root, int u, int v) {
39 if (!root || root->val == u || root->val == v) return root;
40 node left = LCA(root->left, u, v);
41 node right = LCA(root->right, u, v);
42 return !left ? right : !right ? left : root;
43 }
44
45 int main() {
46 int m, n;
47 cin >> m >> n;
48 inOrder.resize(n);
49 preOrder.resize(n);
50 for (int i = 0; i < n; ++i) cin >> inOrder[i];
51 for (int i = 0; i < n; ++i) cin >> preOrder[i];
52 set<int> visited(inOrder.begin(), inOrder.end());
53 node root = buildTree(0, n - 1, 0, n - 1);
54 int u, v;
55 for (int i = 0; i < m; ++i) {
56 cin >> u >> v;
57 if (visited.find(u) != visited.end() &&
58 visited.find(v) != visited.end()) {
59 node lca = LCA(root, u, v);
60 if (lca->val == u)
61 cout << u << " is an ancestor of " << v << "." << endl;
62 else if (lca->val == v)
63 cout << v << " is an ancestor of " << u << "." << endl;
64 else
65 cout << "LCA of " << u << " and " << v << " is " << lca->val
66 << "." << endl;
67 } else if (visited.find(u) != visited.end()) {
68 cout << "ERROR: " << v << " is not found." << endl;
69 } else if (visited.find(v) != visited.end()) {
70 cout << "ERROR: " << u << " is not found." << endl;
71 } else {
72 cout << "ERROR: " << u << " and " << v << " are not found." << endl;
73 }
74 }
75
76 return 0;
77 }

不用建树的代码:

 1 #include <iostream>
2 #include <vector>
3 #include <map>
4 using namespace std;
5 map<int, int> pos;
6 vector<int> in, pre;
7 void lca(int inl, int inr, int preRoot, int a, int b) {
8 if (inl > inr) return;
9 int inRoot = pos[pre[preRoot]], aIn = pos[a], bIn = pos[b];
10 if (aIn < inRoot && bIn < inRoot)
11 lca(inl, inRoot-1, preRoot+1, a, b);
12 else if ((aIn < inRoot && bIn > inRoot) || (aIn > inRoot && bIn < inRoot))
13 printf("LCA of %d and %d is %d.\n", a, b, in[inRoot]);
14 else if (aIn > inRoot && bIn > inRoot)
15 lca(inRoot+1, inr, preRoot+1+(inRoot-inl), a, b);
16 else if (aIn == inRoot)
17 printf("%d is an ancestor of %d.\n", a, b);
18 else if (bIn == inRoot)
19 printf("%d is an ancestor of %d.\n", b, a);
20 }
21 int main() {
22 int m, n, a, b;
23 scanf("%d %d", &m, &n);
24 in.resize(n + 1), pre.resize(n + 1);
25 for (int i = 1; i <= n; i++) {
26 scanf("%d", &in[i]);
27 pos[in[i]] = i;
28 }
29 for (int i = 1; i <= n; i++) scanf("%d", &pre[i]);
30 for (int i = 0; i < m; i++) {
31 scanf("%d %d", &a, &b);
32 if (pos[a] == 0 && pos[b] == 0)
33 printf("ERROR: %d and %d are not found.\n", a, b);
34 else if (pos[a] == 0 || pos[b] == 0)
35 printf("ERROR: %d is not found.\n", pos[a] == 0 ? a : b);
36 else
37 lca(1, n, 1, a, b);
38 }
39 return 0;
40 }

1151 LCA in a Binary Tree (30point(s))的更多相关文章

  1. PAT 1151 LCA in a Binary Tree[难][二叉树]

    1151 LCA in a Binary Tree (30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  2. 【PAT 甲级】1151 LCA in a Binary Tree (30 分)

    题目描述 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has bo ...

  3. PAT 甲级 1151 LCA in a Binary Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430130011897856 The lowest common anc ...

  4. 1151 LCA in a Binary Tree(30 分)

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  5. PAT Advanced 1151 LCA in a Binary Tree (30) [树的遍历,LCA算法]

    题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...

  6. 1151 LCA in a Binary Tree

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  7. PAT甲级|1151 LCA in a Binary Tree 先序中序遍历建树 lca

    给定先序中序遍历的序列,可以确定一颗唯一的树 先序遍历第一个遍历到的是根,中序遍历确定左右子树 查结点a和结点b的最近公共祖先,简单lca思路: 1.如果a和b分别在当前根的左右子树,当前的根就是最近 ...

  8. PAT_A1151#LCA in a Binary Tree

    Source: PAT A1151 LCA in a Binary Tree (30 分) Description: The lowest common ancestor (LCA) of two n ...

  9. PAT-1151(LCA in a Binary Tree)+最近公共祖先+二叉树的中序遍历和前序遍历

    LCA in a Binary Tree PAT-1151 本题的困难在于如何在中序遍历和前序遍历已知的情况下找出两个结点的最近公共祖先. 可以利用据中序遍历和前序遍历构建树的思路,判断两个结点在根节 ...

随机推荐

  1. C++教程01:计算机系统的组成

    教程首发 | 公众号:lunvey 学习C++之前,需要先了解一点基础的计算机知识.毕竟C++是跑在计算机系统上的,我们写的程序都是一段段的指令集. 首台计算机ENIAC问世之后,缺少原理指导.冯诺依 ...

  2. 看完我的笔记不懂也会懂----git

    Git学习笔记 - 什么是Git - 首次使用Git - DOS常用命令 - Git常用命令 - 关于HEAD - 版本回退 - 工作区.暂存区与版本库 - git追踪的是修改而非文件本身 - 撤销修 ...

  3. MySQL:逻辑库与表管理

    逻辑库管理 语句 说明 CREATE DATABASE 逻辑库名; 创建逻辑库 SHOW DATABASES; 显示所有逻辑库 DROP DATABASE 逻辑库名; 删除逻辑库 USE 逻辑库名; ...

  4. 微信小程序 下拉刷新 上拉加载

    1.下拉刷新  小程序页面集成了下拉功能,并提供了接口,我们只需要一些配置就可以拿到事件的回调. 1. 需要在 .json 文件中配置. 如果配置在app.json文件中,那么整个程序都可以下拉刷新. ...

  5. 【Arduino学习笔记02】第一个Arduino项目——点亮LED Blink.ino程序解读 Arduino程序基本结构 pinMode() digitalWrite() delay()

    /* Blink Turns an LED on for one second, then off for one second, repeatedly. */// define variables ...

  6. 使用zap接收gin框架默认的日志并配置日志归档

    目录 使用zap接收gin框架默认的日志并配置日志归档 gin默认的中间件 基于zap的中间件 在gin项目中使用zap 使用zap接收gin框架默认的日志并配置日志归档 本文介绍了在基于gin框架开 ...

  7. 【Azure API 管理】APIM CORS策略设置后,跨域请求成功和失败的Header对比实验

    在文章"从微信小程序访问APIM出现200空响应的问题中发现CORS的属性[terminate-unmatched-request]功能"中分析了CORS返回空200的问题后,进一 ...

  8. NoSQL安装与操作

    redis操作: redis的启动与关闭:注意:(需要关闭防火墙) redis的启动:redis-server redis.conf redis的登录:redis-cli -a pass redis的 ...

  9. java实现所有排序算法

    package sort;public class Sort { public static void BubbleSort(int[] arr) { //TODO 冒泡排序 for(int i=ar ...

  10. 从RocketMQ的Broker源码层面验证一下这两个点

    本篇博客会从源码层面,验证在RocketMQ基础概念剖析,并分析一下Producer的底层源码中提到的结论,分别是: Broker在启动时,会将自己注册到所有的NameServer上 Broker在启 ...