题解 CF241E Flights
题目大意
给出一个 \(n\) 个点 \(m\) 条边的 \(\texttt{DAG}\) ,给每条边设定边权为 \(1\) 或者 \(2\) ,使得 \(1\to n\) 的每条路径长度都相同。
\(n\le 10^3,m\le 5\times 10^3\)
思路
老实说,真的对得起 \(2600\) 的评分(以我现在的角度来看),正解应该算比较难想的吧。。。
首先肯定需要把没有用的路径删掉,就是不能从 \(1\to n\) 的路径。
首先我们会发现一个比较显然的结论:\(1\to i\) 的任意路径都应该相同。这个结论应该都能想到,但是应该怎么用呢?如果我们设 \(\text{dis}(i)\) 表示 \(1\to i\) 的最短路径长度,那么如果存在边 \(u\to v\),则有:
\]
然后我们发现这个东西我们可以用差分约束解决。时间复杂度则为 \(\texttt{SPFA}\) 的时间复杂度。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define PII pair<int,int>
#define Int register int
#define MAXM 5005
#define MAXN 1005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,m;
PII Edge[MAXM];
int toop = 1,to[MAXM << 1],nxt[MAXM << 1],wei[MAXM << 1],tim[MAXN],vis[MAXN],dis[MAXN],head[MAXN];
void Add_Edge (int u,int v,int w){
// cout << u << " -> " << v << ": " << w << endl;
to[++ toop] = v,wei[toop] = w,nxt[toop] = head[u],head[u] = toop;
}
void Spfa (){
queue <int> q;
while (!q.empty()) q.pop ();
memset (vis,0,sizeof (vis));
memset (dis,0x3f,sizeof (dis));
q.push (1),vis[1] = 1,dis[1] = 0;
while (!q.empty()){
int u = q.front();q.pop ();vis[u] = 0,tim[u] ++;
if (tim[u] > n){
puts ("No");
exit (0);
}
for (Int i = head[u];i;i = nxt[i]){
int v = to[i],w = wei[i];
if (dis[v] > dis[u] + w){
dis[v] = dis[u] + w;
if (!vis[v]) vis[v] = 1,q.push (v);
}
}
}
}
vector <int> G[2][MAXN];
int ans[MAXN],vis1[MAXN];
void dfs (int u,int ty){vis1[u] |= 1 << ty;for (int v : G[ty][u]) if (!(vis1[v] & (1 << ty)))dfs (v,ty);}
signed main(){
read (n,m);
for (Int i = 1,u,v;i <= m;++ i) read (u,v),Edge[i] = make_pair (u,v),G[0][u].push_back (v),G[1][v].push_back (u);
dfs (1,0),dfs (n,1);for (Int i = 1,u,v;i <= m;++ i){
u = Edge[i].first,v = Edge[i].second;
if (vis1[u] == 3 && vis1[v] == 3) Add_Edge (u,v,2),Add_Edge (v,u,-1);
}
Spfa ();
puts ("Yes");
for (Int i = 1;i <= m;++ i){
int u = Edge[i].first,v = Edge[i].second;
if (vis1[u] == 3 && vis1[v] == 3) write (dis[v] - dis[u]),putchar ('\n');
else puts ("1");
}
return 0;
}
题解 CF241E Flights的更多相关文章
- [CF241E]Flights
[CF241E]Flights 题目大意: 给一张\(n(n\le1000)\)个点\(m(m\le5000)\)条边的DAG,确定每条边的边权\(w_i(w_i\in\{1,2\})\),使得所有从 ...
- CF241E Flights 题解
题目 做了一下这道题,突然发现自己忘了差分约束,赶紧复习一下. 设当前有n个变量 a1,a2,...,an ,有若干组限制形如 ai≤aj+k (其中k为常数),则由点j向点i连一条边权为k的边,再从 ...
- CF241E Flights 差分约束
传送门 差分约束永远是Itst最烂的图论知识点没有之一qwq 先用dfs把在\(1\)到\(N\)的路径上的所有点都拿出来,其他的点和边状态任意都不会影响答案. 然后考虑设\(dis_i\)表示从\( ...
- 【CF241E】Flights(差分约束)
[CF241E]Flights(差分约束) 题面 CF 有\(n\)个点\(m\)条边,要求给每条边赋一个\(1\)或\(2\)的边权,判断能否使得每一条\(1\)到\(n\)的路径的权值和都相等,如 ...
- 【CF241E】Flights
[CF241E]Flights 题面 洛谷 题解 对于原来的图,如果一条边不出现在\(1\)到\(n\)的路径上面,直接\(ban\)掉即可. 那么考虑一条边\(u\rightarrow v\),一定 ...
- CodeForces - 241E Flights 题解
题目大意: 有一个有向无环图,n个点m条边,所有边权为1或2,求一组使所有从1到n的路径长度相同的边权的方案. 思路: 设从1到i的最短路为dist[i],若有一条从x到y的边,则1<=dist ...
- 「CF241E」Flights
传送门 Luogu 解题思路 首先对于所有不属于任何一条路径上的边,它的权值是任意的. 对于所有在路径上的边 \((u,v)\) 满足 \(1\le dis_v-dis_u\le2\) 差分约束即可. ...
- 题解 CF576D 【Flights for Regular Customers】
对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序. 然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另 ...
- Codeforces Round #384 (Div. 2) A. Vladik and flights 水题
A. Vladik and flights 题目链接 http://codeforces.com/contest/743/problem/A 题面 Vladik is a competitive pr ...
随机推荐
- 小程序生成商品分享二维码海报解决方案和实现方式JAVA
使用技术: Graphics , 七牛云 , 微信sdk(github上非常出名的wxjava,地址https://github.com/Wechat-Group/WxJava/)直接上干货代码,每 ...
- 关闭 Scroll Lock
通常,在电子表格中选择一个单元格并按箭头键时,所选内容会在各个单元格之间上下左右移动,具体取决于您按的箭头键.但是,如果在 Scroll Lock 处于开启状态时按箭头键,则向上或向下滚动一行.或者, ...
- .NetCore3.1获取文件并重新命名以及大批量更新及写入数据
using Microsoft.AspNetCore.Mvc; using MySql.Data.MySqlClient; using System; using System.Collections ...
- leetcode——217. 存在重复元素
leetcode--217. 存在重复元素 题目描述:给定一个整数数组,判断是否存在重复元素. 如果存在一值在数组中出现至少两次,函数返回 true .如果数组中每个元素都不相同,则返回 false ...
- 如何实现LRU缓存?
面试官:来了,老弟,LRU缓存实现一下? 我:直接LinkedHashMap就好了. 面试官:不要用现有的实现,自己实现一个. 我:..... 面试官:回去等消息吧.... 大家好,我是程序员学长,今 ...
- Selenium4 IDE初体验
今天闲来无事,尝试了一番Selenium4的IDE,提供了录制和回放的功能.下面是对它的简单介绍. 安装 下载地址:https://www.selenium.dev/selenium-ide/ 在下载 ...
- openswan中out_sa()函数报文封装思想
out_sa()函数报文封装思想讲解 1. out_sa前言 我已经在上一篇文章中将in_struct函数的基本原理进行了阐述,而out_struct()的实现基本是相同的,如果能理解in_struc ...
- 用Java写了一个程序,将一个Mysql库中的表,迁移到另外一个server上的Mysql库中
用Navicat做数据迁移,因为数据量比较大,迁移过过程中一个是进展不直观,另外就是cpu占用率高的时候,屏幕跟死机了一样点不动按钮,不好中断. 想了想,干脆自己写一个. 在网上找了一个sqllite ...
- 1.Java 基础
1. JDK 和 JRE 有什么区别? jdk:开发工具包,jre:java运行环境 jdk包含了jre和java开发环境,如编译java源码的编译器javac,还包含了许多java程序调试和分析的工 ...
- Java比较两个浮点数
浮点数的基本数据类型不能用==比较,包装数据类型不能用 equals 比较 浮点数的表示 在计算机系统中,浮点数采用 符号+阶码+尾数 进行表示.在Java中,单精度浮点数float类型占32位,它的 ...