题解 CF241E Flights
题目大意
给出一个 \(n\) 个点 \(m\) 条边的 \(\texttt{DAG}\) ,给每条边设定边权为 \(1\) 或者 \(2\) ,使得 \(1\to n\) 的每条路径长度都相同。
\(n\le 10^3,m\le 5\times 10^3\)
思路
老实说,真的对得起 \(2600\) 的评分(以我现在的角度来看),正解应该算比较难想的吧。。。
首先肯定需要把没有用的路径删掉,就是不能从 \(1\to n\) 的路径。
首先我们会发现一个比较显然的结论:\(1\to i\) 的任意路径都应该相同。这个结论应该都能想到,但是应该怎么用呢?如果我们设 \(\text{dis}(i)\) 表示 \(1\to i\) 的最短路径长度,那么如果存在边 \(u\to v\),则有:
\]
然后我们发现这个东西我们可以用差分约束解决。时间复杂度则为 \(\texttt{SPFA}\) 的时间复杂度。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define PII pair<int,int>
#define Int register int
#define MAXM 5005
#define MAXN 1005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,m;
PII Edge[MAXM];
int toop = 1,to[MAXM << 1],nxt[MAXM << 1],wei[MAXM << 1],tim[MAXN],vis[MAXN],dis[MAXN],head[MAXN];
void Add_Edge (int u,int v,int w){
// cout << u << " -> " << v << ": " << w << endl;
to[++ toop] = v,wei[toop] = w,nxt[toop] = head[u],head[u] = toop;
}
void Spfa (){
queue <int> q;
while (!q.empty()) q.pop ();
memset (vis,0,sizeof (vis));
memset (dis,0x3f,sizeof (dis));
q.push (1),vis[1] = 1,dis[1] = 0;
while (!q.empty()){
int u = q.front();q.pop ();vis[u] = 0,tim[u] ++;
if (tim[u] > n){
puts ("No");
exit (0);
}
for (Int i = head[u];i;i = nxt[i]){
int v = to[i],w = wei[i];
if (dis[v] > dis[u] + w){
dis[v] = dis[u] + w;
if (!vis[v]) vis[v] = 1,q.push (v);
}
}
}
}
vector <int> G[2][MAXN];
int ans[MAXN],vis1[MAXN];
void dfs (int u,int ty){vis1[u] |= 1 << ty;for (int v : G[ty][u]) if (!(vis1[v] & (1 << ty)))dfs (v,ty);}
signed main(){
read (n,m);
for (Int i = 1,u,v;i <= m;++ i) read (u,v),Edge[i] = make_pair (u,v),G[0][u].push_back (v),G[1][v].push_back (u);
dfs (1,0),dfs (n,1);for (Int i = 1,u,v;i <= m;++ i){
u = Edge[i].first,v = Edge[i].second;
if (vis1[u] == 3 && vis1[v] == 3) Add_Edge (u,v,2),Add_Edge (v,u,-1);
}
Spfa ();
puts ("Yes");
for (Int i = 1;i <= m;++ i){
int u = Edge[i].first,v = Edge[i].second;
if (vis1[u] == 3 && vis1[v] == 3) write (dis[v] - dis[u]),putchar ('\n');
else puts ("1");
}
return 0;
}
题解 CF241E Flights的更多相关文章
- [CF241E]Flights
[CF241E]Flights 题目大意: 给一张\(n(n\le1000)\)个点\(m(m\le5000)\)条边的DAG,确定每条边的边权\(w_i(w_i\in\{1,2\})\),使得所有从 ...
- CF241E Flights 题解
题目 做了一下这道题,突然发现自己忘了差分约束,赶紧复习一下. 设当前有n个变量 a1,a2,...,an ,有若干组限制形如 ai≤aj+k (其中k为常数),则由点j向点i连一条边权为k的边,再从 ...
- CF241E Flights 差分约束
传送门 差分约束永远是Itst最烂的图论知识点没有之一qwq 先用dfs把在\(1\)到\(N\)的路径上的所有点都拿出来,其他的点和边状态任意都不会影响答案. 然后考虑设\(dis_i\)表示从\( ...
- 【CF241E】Flights(差分约束)
[CF241E]Flights(差分约束) 题面 CF 有\(n\)个点\(m\)条边,要求给每条边赋一个\(1\)或\(2\)的边权,判断能否使得每一条\(1\)到\(n\)的路径的权值和都相等,如 ...
- 【CF241E】Flights
[CF241E]Flights 题面 洛谷 题解 对于原来的图,如果一条边不出现在\(1\)到\(n\)的路径上面,直接\(ban\)掉即可. 那么考虑一条边\(u\rightarrow v\),一定 ...
- CodeForces - 241E Flights 题解
题目大意: 有一个有向无环图,n个点m条边,所有边权为1或2,求一组使所有从1到n的路径长度相同的边权的方案. 思路: 设从1到i的最短路为dist[i],若有一条从x到y的边,则1<=dist ...
- 「CF241E」Flights
传送门 Luogu 解题思路 首先对于所有不属于任何一条路径上的边,它的权值是任意的. 对于所有在路径上的边 \((u,v)\) 满足 \(1\le dis_v-dis_u\le2\) 差分约束即可. ...
- 题解 CF576D 【Flights for Regular Customers】
对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序. 然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另 ...
- Codeforces Round #384 (Div. 2) A. Vladik and flights 水题
A. Vladik and flights 题目链接 http://codeforces.com/contest/743/problem/A 题面 Vladik is a competitive pr ...
随机推荐
- 【C语言】第2章 算法 — 程序的灵魂
第2章 算法 - 程序的灵魂 一个程序主要包括以下两方面的信息: 对数据的描述.在程序中要指定用到哪些数据以及这些数据的类型和数据的组织形式 也就是数据结构(data structure) 对操作的描 ...
- Mybatis笔记(3)
一.多表查询 1.1 一对一查询 订单和用户(一个订单属于一个) Order实体类有user属性 配置resultMap(OrderMap) <select id="findAll&q ...
- 基于源码编译的lnmp架构实现论坛的搭建及memcache的应用
系统环境: RHEL6 x86-64 selinux and iptables disabled LNMP代表的就是:Linux系统下Nginx+MySQL+PHP这种网站服务器架构 Linux是一类 ...
- 聊聊spring事务失效的12种场景,太坑了
前言 对于从事java开发工作的同学来说,spring的事务肯定再熟悉不过了. 在某些业务场景下,如果一个请求中,需要同时写入多张表的数据.为了保证操作的原子性(要么同时成功,要么同时失败),避免数据 ...
- js基本数据类型之间的转换
常见五大基本数据类型 1.number 2.string 3.boolean 4.undefined 5.null 一.转换为string ①调用toString() 方法 因为null和undefi ...
- client-go实战之一:准备工作
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- python 回归分析
一.线性回归 1 绘制散点图 import matplotlib.pyplot as plt x = [5,7,8,7,2,17,2,9,4,11,12,9,6] y = [99,86,87,88,1 ...
- FastAPI(1)- 简单介绍
前言 为啥要学它呢,因为学 Flask 的时候发现有人更推荐它代替 Flask,看了下介绍,感觉很强,而且也能拿来做平台,当然学起来!卷起来! 为什么要使用 FastAPI ? 日渐没落的是后端 HT ...
- docker一分钟搭建nginx服务器
运行nginx服务 拉取: docker pull nginx:1.17.9 运行: docker run -d --name nginx -P 80:80 nginx:1.17.9 -d表示在后台启 ...
- bash-completion linux命令补全
1.有时候用docker run 或者kubectl 想tab补全的时候用不了 这个时候可以安装一个神奇的包bash-completion yum install bash-completion 2. ...