1246 - Colorful Board
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is
|x1 - x2| + |y1 - y2|
For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.
After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.
You have to determine how many ways to color the board using those K colors.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case starts with a line containing three integers M, N, K (0 ≤ M, N ≤ 19, 1 ≤ K ≤ 50).
Output
For each case, print the case number and the number of ways you can color the board. The result can be large, so print the result modulo 1000000007.
Sample Input |
Output for Sample Input |
4 0 0 1 0 0 2 5 5 2 5 5 1 |
Case 1: 1 Case 2: 2 Case 3: 2 Case 4: 0 |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is
|x1 - x2| + |y1 - y2|
For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.
After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.
You have to determine how many ways to color the board using those K colors.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case starts with a line containing three integers M, N, K (0 ≤ M, N ≤ 19, 1 ≤ K ≤ 50).
Output
For each case, print the case number and the number of ways you can color the board. The result can be large, so print the result modulo 1000000007.
Sample Input |
Output for Sample Input |
4 0 0 1 0 0 2 5 5 2 5 5 1 |
Case 1: 1 Case 2: 2 Case 3: 2 Case 4: 0 |
1 #include<stdio.h>
2 #include<algorithm>
3 #include<string.h>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7 const LL N= 1000000007;
8 LL yan[1005][1005];
9 LL STL[1005][1005];
10 LL pp[1005];
11 LL quick(LL n,LL m);
12 int main(void)
13 {
14 int i,j,k;
15 scanf("%d",&k);
16 int s;
17 yan[0][0]=1;
18 for(i=1; i<=1000; i++)
19 {
20 for(j=0; j<=i; j++)
21 {
22 if(j==0||i==j)
23 yan[i][j]=1;
24 else
25 {
26 yan[i][j]=(yan[i-1][j]+yan[i-1][j-1])%N;
27 }
28 }
29 }
30 pp[0]=1;
31 for(i=1;i<=1000;i++)
32 pp[i]=(pp[i-1]*i)%N;
33 memset(STL,0,sizeof(STL));
34 STL[0][0]=1;
35 STL[1][0]=0;
36 STL[1][1]=1;
37 for(i=2; i<=1000; i++)
38 {
39 for(j=1; j<=i; j++)
40 {
41 if(j==1||i==j)
42 STL[i][j]=1;
43 else
44 {
45 STL[i][j]=((STL[i-1][j]*j)%N+STL[i-1][j-1])%N;
46 }
47 }
48 }
49 for(s=1; s<=k; s++)
50 {
51 int x1,x2,x3,x4;
52 scanf("%d %d %d",&x1,&x2,&x3);
53 x1+=1;
54 x2+=1;
55 LL sum=(x1*x2);
56 LL he=(sum+1)/2;
57 LL cnt=0;
58 for(i=1; i<=min((LL)x3,he); i++)
59 {
60 LL x=x3-i;
61 LL kk=quick(x,sum-he);
62 LL ak=((STL[he][i]*yan[x3][i]%N)*kk)%N;
63 cnt=(cnt+ak*pp[i]%N)%N;
64 }
65 printf("Case %d: ",s);
66 printf("%lld\n",cnt);
67 }
68 return 0;
69 }
70
71 LL quick(LL n,LL m)
72 {
73 LL ans=1;n%=N;
74 while(m)
75 {
76 if(m&1)
77 ans=(ans*n)%N;
78 n=(n*n)%N;
79 m/=2;
80 }
81 return ans;
82 }
1246 - Colorful Board的更多相关文章
- LightOJ - 1246 Colorful Board(DP+组合数)
http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...
- LightOJ - 1246 - Colorful Board(DP)
链接: https://vjudge.net/problem/LightOJ-1246 题意: You are given a rectangular board. You are asked to ...
- AC日记——丑数 codevs 1246
1246 丑数 USACO 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 对于一给定的素 ...
- [LeetCode] Battleships in a Board 平板上的战船
Given an 2D board, count how many different battleships are in it. The battleships are represented w ...
- UP Board 串口使用心得
前言 原创文章,转载引用务必注明链接. 本文使用Markdown写成,为获得更好的阅读体验和正常的图片.链接,请访问我的博客: http://www.cnblogs.com/sjqlwy/p/up_s ...
- UP Board 网络设置一本通
前言 原创文章,转载引用务必注明链接,水平有限,欢迎指正. 本文环境:ubilinux 3.0 on UP Board 本文使用Markdown写成,为获得更好的阅读体验和正常的图片.链接,请访问我的 ...
- UP Board USB无线网卡一贴通
前言 原创文章,转载引用务必注明链接,水平有限,欢迎指正. 本文环境:ubilinux 3.0 kernel 4.4.0 本文使用Markdown写成,为获得更好的阅读体验和正常的图片.链接,请访问我 ...
- 在UP Board 上搭建M——L服务器
前言 原创文章,转载引用务必注明链接,水平有限,欢迎指正. 本文环境:ubilinux 3.0 on UP Board 初识免流 所谓免流,就是免除手机访问网络产生的流量费用.其原理在乌云网上有过报道 ...
- UP Board 妄图启动ubilinux失败
前言 原创文章,转载引用务必注明链接. 经历了上次的上电开机失败,我们终于发现需要手动为UP板安装系统,因为没有显示器的Headless模式时,使用Linux比较方便,另外熟悉Debian系的,所以选 ...
随机推荐
- 深度探讨 PHP 之性能
1.缘起 关于PHP,很多人的直观感觉是PHP是一种灵活的脚本语言,库类丰富,使用简单,安全,非常适合WEB开发,但性能低下.PHP的性能是否真的就 如同大家的感觉一样的差呢?本文就是围绕这么一个话题 ...
- 扩展kmp 学习笔记
学习了一下这个较为冷门的知识,由于从日报开始看起,还是比较绕的-- 首先定义 \(Z\) 函数表示后缀 \(i\) 与整个串的 \(lcp\) 长度 一个比较好的理解于实现方式是类似于 \(manac ...
- 基于树莓派部署 code-server
code-server 是 vscode 的服务端程序,通过部署 code-server 在服务器,可以实现 web 端访问 vscode.进而可以达到以下能力: 支持跨设备(Mac/iPad/iPh ...
- abide, able, abnormal
abide 近/反义词:1. 忍受: bear, endure, put up with, stand, tolerate2. 遵守(abide by): accept, comply, confor ...
- day12 keepalived高可用
day12 keepalived高可用 一.高可用介绍 1.什么是高可用 部署在整个集群中的一个高可用软件,作用是创建一个VIP(虚拟IP),在整个集群中有且只有一个机器上生成VIP,当这台机器出现问 ...
- Ubuntu Linux安装QT5之旅
1. QT 版本选择 如何选择QT版本,参考如下介绍 https://www.cnblogs.com/chinasoft/p/15226293.html 2. 在此以5.15.0解说 下载QT 版本 ...
- node环境变量配置
1.Node.js 官方网站下载:https://nodejs.org/en/ 2.打开安装,傻瓜式下一步即可,然后配置环境变量 3.因为在执行例如npm install webpack -g等命令全 ...
- Spring Cloud声明式调用Feign负载均衡FeignClient详解
为了深入理解Feign,下面将从源码的角度来讲解Feign.首先来看看FeignClient注解@FeignClient的源码,代码如下: FeignClient注解被@Target(ElementT ...
- CentOS 7.3安装完整开发环境
系统版本CentOS 7.3(1611) 安装开发环境1) 通过group安装 yum groups mark install "Development Tools" yum gr ...
- JDBC(3):PreparedStatement对象介绍
一,PreparedStatement介绍 PreperedStatement是Statement的子类,它的实例对象可以通过Connection.preparedStatement()方法获得,相对 ...