目录

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]. international conference on artificial intelligence and statistics, 2010: 249-256.

@article{glorot2010understanding,

title={Understanding the difficulty of training deep feedforward neural networks},

author={Glorot, Xavier and Bengio, Yoshua},

pages={249--256},

year={2010}}

本文提出了Xavier参数初始化方法.

主要内容

在第\(i=1, \ldots, d\)层:

\[\mathbf{s}^i=\mathbf{z}^i W^i+\mathbf{b}^i \\
\mathbf{z}^{i+1}= f(\mathbf{s}^i),
\]

其中\(\mathbf{z}^i\)是第\(i\)层的输入, \(\mathbf{s}^i\)是激活前的值, \(f(\cdot)\)是激活函数(假设其在0点对称, 且\(f'(0)=1\) 如tanh).

\[\mathrm{Var}(z^i) = n_l\mathrm{Var}(w^iz^i),
\]

在\(0\)附近近似成立(既然\(f'(0)=1\)), 其中\(z^i, w^i,\)分别是\(\mathbf{z}^i, W^i\)的某个元素, 且假设这些\(\{w^i\}\)之间是独立同分布的, \(w^i, z^i\)是相互独立的, 进一步假设\(\mathbb{E}(w^i)=0,\mathbb{E}(x)=0\)(\(x\)是输入的样本), 则

\[\mathrm{Var}(z^i) = n_l\mathrm{Var}(w^i)\mathrm{Var}(z^i),
\]

在\(0\)点附近近似成立.

\[\mathrm{Var}(z^i) = \mathrm{Var}(x) \prod_{i'=0}^{i-1} n_{i'} \mathrm{Var}(w_{i'})
\]

其中\(n_i\)表示第\(i\)层输入的节点个数.

根据梯度反向传播可知:

\[\tag{2}
\frac{\partial Cost}{\partial s_k^i} = f'(s_k^i) W_{k, \cdot}^{i+1} \frac{\partial Cost}{\partial \mathbf{s}^{i+1}}
\]
\[\tag{3}
\frac{\partial Cost}{\partial w_{l,k}^i} = z_l^i \frac{\partial Cost}{\partial s_k^i}.
\]

于是

\[\tag{6}
\mathrm{Var}[\frac{\partial Cost}{\partial s_k^i}] = \mathrm{Var}[\frac{\partial Cost}{\partial s^d}] \prod_{i'=i}^d n_{i'+1} \mathrm{Var} [w^{i'}],
\]
\[\mathrm{Var}[\frac{\partial Cost}{\partial w^i}] = \prod_{i'=0}^{i-1} n_{i'} \mathrm{Var}[w^{i'}] \prod_{i'=i}^d n_{i'+1} \mathrm{Var} [w^{i'}] \times \mathrm{Var}(x) \mathrm{Var}[\frac{\partial Cost}{\partial s^d}],
\]

当我们要求前向进程中关于\(z^i\)的方差一致, 则

\[\tag{10}
\forall i, \quad n_i \mathrm{Var} [w^i]=1.
\]

当我们要求反向进程中梯度的方差\(\frac{\partial Cost}{\partial s^i}\)一致, 则

\[\tag{11}
\forall i \quad n_{i+1} \mathrm{Var} [w^i]=1.
\]

本文选了一个折中的方案

\[\mathrm{Var} [w^i] = \frac{2}{n_{i+1}+n_{i}},
\]

并构造了一个均匀分布, \(w^i\)从其中采样

\[w^i \sim U[-\frac{\sqrt{6}}{\sqrt{n_{i+1}+n_{i}}},\frac{\sqrt{6}}{\sqrt{n_{i+1}+n_{i}}}].
\]

文章还有许多关于不同的激活函数的分析, 如sigmoid, tanh, softsign... 这些不是重点, 就不记录了.

[Xavier] Understanding the difficulty of training deep feedforward neural networks的更多相关文章

  1. Xavier——Understanding the difficulty of training deep feedforward neural networks

    1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...

  2. Understanding the difficulty of training deep feedforward neural networks

    本文作者为:Xavier Glorot与Yoshua Bengio. 本文干了点什么呢? 第一步:探索了不同的激活函数对网络的影响(包括:sigmoid函数,双曲正切函数和softsign y = x ...

  3. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  4. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

    Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  9. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

随机推荐

  1. 日常Java 2021/9/21

    将Java数组中的元素前后反转.题目要求:已知一个数组arr = {11,12,13,14,15}用程序实现把该数组中的元素值交换,交换后的数组arr = { 15,14,13,12,11},并输出交 ...

  2. HTTP请求 Java API

    1.导入依赖 <dependency> <groupId>commons-httpclient</groupId> <artifactId>common ...

  3. 分类模型性能的评判方法-ROC分析

    一.混淆矩阵 二.引入ROC曲线 如上第一幅图,蓝色高斯表示真实值为阴性,红色高斯表示真实值为阳性.A,B,C代表不同的阈值,阈值线左边表示预测值为阴性,阈值线右边表示预测值为阳性.阈值从A到C,由此 ...

  4. Shell学习(四)——shell中各种括号的作用

    参考博客: [1]shell中各种括号的作用().(()).[].[[]].{} [2]shell中的单层大/中/小括号.双层大中小括号.命令替换等 一.前言 目录 单括号() 双括号(( )) 单中 ...

  5. 增大Oracle Virtualbox的磁盘空间

    https://blog.csdn.net/hiyachen/article/details/102131823 背景 在virtualbox中装好Linux以及Application之后,发现硬盘空 ...

  6. Linux服务器---xopps

    XOOPS XOOPS是一款用php制作的开源网站管理系统,可用于构建各种网络站点. 1.下载XOOPS软件(https://xoops.org/) 2.将XOOPS软件中的htdocs文件夹拷贝到a ...

  7. OSGI与Spring结合开发web工程

    简介: 作为一个新的事实上的工业标准,OSGi 已经受到了广泛的关注, 其面向服务(接口)的基本思想和动态模块部署的能力, 是企业级应用长期以来一直追求的目标.Spring 是一个著名的 轻量级 J2 ...

  8. @RestController和@Controller的区别与作用

    在springMvc中controller层类上的要使用@Controller来注明该类属于控制层,在controller层常返回的数据形式有以下几种: 页面:静态页面 ModelAndView:返回 ...

  9. jquery:iframe里面的元素怎样触发父窗口元素的事件?

    例如父窗口定义了一个事件. top: $(dom1).bind('topEvent', function(){}); 那么iframe里面的元素怎样触发父窗口dom1的事件呢?这样吗? $(dom1, ...

  10. HashMap的putAll方法介绍说明

    jdk1.8 使用putAll时,新map中的值仅为旧map值所对应对象的引用,并不会产生新对象. 如下,使用for循环赋值! public void putAll(Map<? extends ...