Niu Y., Tang K., Zhang H., Lu Z., Hua X. and Wen J. Counterfactual VQA: A Cause-Effect Look at Language Bias. CVPR, 2021.

利用因果分析消除VQA(Visual Question Answering (VQA))中的language bias.

主要内容

如上图所示,

\(Q\): question;

\(V\): image;

\(K\): multi-modal knowledge;

\(A\): answer.

影响最后决策\(A\)有三种:

  1. \(Q \rightarrow A\), 直接受question影响, 比如模型对于所有的问图中的香蕉是什么颜色的问题均回答"黄色", 显然是不考虑图片的影响(因为可能是绿色), 这种实际上就是language bias;
  2. \(V \rightarrow A\), 直接受图片影响;
  3. \(V, Q \rightarrow K \rightarrow A\), 这里有一个mediator K, 即部分影响兼顾了\(Q, V\).

理想的VQA模型应该舍弃1中的影响, 在因果分析里头, 这部分direct effect被称之为natural direct effect (pure direct effect实际上):

\[NDE = A_{q, v^*, k*} - A_{q*, v^*, k^*}.
\]

余下的是TIE (total indirect effect):

\[TIE = TE - NDE = A_{q, v, k} - A_{q, v^*, k^*}.
\]

作者的思路是在inference的时候找到一个\(a\), 最大化TIE.

需要说明的是:

\[\mathrm{Pr}[A|do(Q, V, K)]
=\mathrm{Pr}[A|Q, V]\\
\mathrm{Pr}[A|do(Q, V^*, K^*)]
=\mathrm{Pr}[A|Q, V^*, K^*]\\
\]

这条件成立的原因单纯是因为作者的假设中并没有confounder, 实际上个人认为应当加一个\(V \rightarrow A\)的 arrow, 虽然这个并不影响上面的结论.

然后作者计算TIE也并不是针对\(A\), 而是\(A\)的score, \(Z=Z(Q=q, V=v, K=k)\).

实现

不同以往, 这一次可以显示地设置\(v^*, k^*\)了:

\[Z_q = \mathcal{F}_Q(q), Z_v=\mathcal{F}_V (v), Z_k=\mathcal{F}_{VQ}(v, q), Z_{q, v, k} = h(Z_q, Z_v, Z_k).
\]

特别的, 在\(q^*, v^*, k^*\)的情况下, 作者采取了如下的策略:

\[Z_q =
\left \{
\begin{array}{ll}
z_q = \mathcal{F}_Q(q), & \mathrm{if}\: Q= q \\
z_{q^*} = c, & \mathrm{if}\: Q=\empty.
\end{array}
\right .
\]
\[Z_v =
\left \{
\begin{array}{ll}
z_v = \mathcal{F}_V(v), & \mathrm{if}\: V= v \\
z_{v^*} = c, & \mathrm{if}\: V=\empty.
\end{array}
\right .
\]
\[Z_q =
\left \{
\begin{array}{ll}
z_k = \mathcal{F}_{VQ}(v,q), & \mathrm{if}\: V=v, Q = q \\
z_{k^*} = c, & \mathrm{if}\: V = \empty \: \mathrm{or}\: Q = \empty.
\end{array}
\right .
\]

这里\(c\)为可学习的变量.

注: 作者在代码中给出, \(c\)为一scalar, 也就是说实际上是:

\[z_* = c \cdot \mathbb{1}_{z}.
\]

作者也在文中指出, 这是为了一个Uniform的假设.

注: 看起来, 似乎应该对不同的\(Z_*\)指定不同的\(c\), 但是实际上, 是不影响的. 这一点是因为在下面HM和SUM的处理方式中, 无论是\(c_1\cdot c_2\cdot c_3\)

还是\(c_1 + c_2 + c_3\)都等价于\(c\) (这里要感谢作者的答复).

有了上面的准备, 下面是\(h\)的构造, 因为我们需要把不同的特征融合起来, 作者给出了两种方案:

  1. Harmonic (HM):
\[h(Z_q, Z_v, Z_k) = \log \frac{Z_{HM}}{1 + Z_{HM}}, Z_{HM} = \sigma(Z_q) \cdot \sigma(Z_v) \cdot \sigma(Z_k).
\]
  1. SUM:
\[h(Z_q, Z_v, Z_k) = \log \sigma(Z_{SUM}), Z_{SUM} = Z_q + Z_v + Z_k.
\]

在训练的时候, 用的是如下的损失:

\[\mathcal{L}_{cls} = \mathcal{L}_{VQA}(v, q, a)+ \mathcal{L}_{QA}(q, a) + \mathcal{L}_{VA}(v, a).
\]

以及, 为了训练\(c\)(且仅用于训练c),

\[\mathcal{L}_{kl} = \frac{1}{|A|}\sum_{a\in \mathcal{A}}-p(a|q,v,k)\log p(a|q, v^*,k^*),
\]

其中\(p(a|q,v,k)=softmax(Z_{q,v, k})\).

虽然感觉可以直接通过最大化TIE来训练c比较合理, 但是正如作者在附录中给出的解释一下, 这种情况明显会导致\(c \rightarrow 0\)并导致\(Z_{q, v^*, k^*}\rightarrow -\infty\).

代码

原文代码

Counterfactual VQA: A Cause-Effect Look at Language Bias的更多相关文章

  1. 【论文笔记】用反事实推断方法缓解标题党内容对推荐系统的影响 Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue

    Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue Authors: 王文杰,冯福利 ...

  2. 关于《阿里巴巴Java开发规约》插件的安装与使用

    一.安装 二.idea插件的安装与使用 https://github.com/alibaba/p3c/tree/master/idea-plugin#run-plugin Idea Plugin Pr ...

  3. OpenGL book list

      From: https://www.codeproject.com/Articles/771225/Learning-Modern-OpenGL   A little guide about mo ...

  4. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  5. The 11 advantages of Java -Why you choose this language

    Java is never just a language.There are lots of programming languages out there, and few of them mak ...

  6. The Django template language 阅读批注

    The Django template language About this document This document explains the language syntax of the D ...

  7. The Go Programming Language. Notes.

    Contents Tutorial Hello, World Command-Line Arguments Finding Duplicate Lines A Web Server Loose End ...

  8. A Language Modeling Approach to Predicting Reading Difficulty-paer

    Volume:Proceedings of the Human Language Technology Conference of the North American Chapter of the ...

  9. 函数式编程语言(Fuction Program Language)

    一.什么是函数式编程语言 函数式编程语言(functional progarm language)一类程序设计语言,是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型. ...

随机推荐

  1. linux vi和vim编辑器

    所有的Linux系统都会内建vi文本编辑器,vim具有程序编辑的能力,可以看作是vi的增强版本 三种常见模式 正常模式 以vim打开一个文档直接进入的模式,快捷键可以使用. 1.这个模式可以使用上下左 ...

  2. 【c++】解析多文件编程的原理

    其实一直搞不懂为什么头文件和其他cpp文件之间的关系,今晚索性一下整明白 [c++]解析多文件编程的原理 a.cpp #include<stdio.h> int main(){ a(); ...

  3. 时光网内地影视票房Top100爬取

    为了和艺恩网的数据作比较,让结果更精确,在昨天又写了一个时光网信息的爬取,这次的难度比艺恩网的大不少,话不多说,先放代码 # -*- coding:utf-8 -*-from __future__ i ...

  4. 使用plantuml,业务交接就是这么简单

    使用plantuml,业务交接就是这么简单 你好,我是轩脉刃. 最近交接了一个业务,原本还是有挺复杂的业务逻辑的,但发现交接过来的项目大有文章,在项目代码中有一个docs文件夹,里面躺着若干个 pum ...

  5. 你的Redis怎么持久化的

    一.持久化套路 OK,一般我们在生产上采用的持久化策略为 (1)master关闭持久化 (2)slave开RDB即可,必要的时候AOF和RDB都开启 该策略能够适应绝大部分场景,绝大部分集群架构. 为 ...

  6. Mysql原有环境部署多个版本

    目录 一.环境准备 二.下载安装包 三.Mysql-5.7单独部署 四.启动Mysql-5.7 五.muliti使用 一.环境准备 原先已经有一个5.6版本的数据库在运行了,当前操作是完全不影响原数据 ...

  7. Kerboros 认证

    转:Kerberos介绍(全)

  8. mysql--求中位数

    第一种求中位数方法: /* 第一步:添加一个正序和反序 第二步:当列表数目为奇数的时候,列表选出的情况,当列表为偶数的时候列表的情况 第三步:统筹奇数和偶数时中位数 */ select sum(Mat ...

  9. 惊天大bug,一把螺丝刀,竟让我有家难回!

    1.回家路上看一地摊,螺丝刀2元一把,买了一个 2.芒格说:"如果你的工具只有一把锤子,你会认为任何问题都是钉子 " 那么当我手里有了一把起子,我看啥都是螺丝钉子. 出租屋里固定门 ...

  10. AT2664 [AGC017A] Biscuits 题解

    Content 有一个长度为 \(n\) 的数列 \(a\).你希望从中选出一些数,使得这些数的和对 \(2\) 取模后的结果为 \(P\).求方案数. 数据范围:\(1\leqslant n\leq ...