洛谷 P3994 高速公路(斜率优化)
题意:给出一棵树,\(1\) 号点为根,边上有边权。
每个点有两个参数 \(p_i,q_i\)
如果你想从 \(i\) 号点到与其距离为 \(d\) 的 \(j\) 号点,那么你需花费 \(d \times p_i+q_i\)。
对于每个 \(i \in [2,n]\),求出:假设你站在 \(i\) 号点,到达 \(1\) 号点的最小花费。
\(1 \leq n \leq 10^6\)
树上斜率优化
dfs 求出 \(i\) 到根节点的路径长度为 \(d_i\)。
朴素的 \(dp\) 非常容易。设 \(dp_i\) 表示到达 \(i\) 号点的最小花费。那么显然
\]
假设 \(j\) 在 \(k\) 的下方,那么 \(j\) 比 \(k\) 更优当且仅当:
\]
\]
\]
\]
开个队列维护 \(i\) 的祖先的点组成的下凸包,然后在队列里二分斜率就可以了。
/*
Contest: -
Problem: P3994
Author: tzc_wk
Time: 2020.5.29
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define giveup(...) return printf(__VA_ARGS__),0;
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define mask(a) (1ll<<(a))
#define maskx(a,x) ((a)<<(x))
#define _bit(a,x) (((a)>>(x))&1)
#define _sz(a) ((int)(a).size())
#define filei(a) freopen(a,"r",stdin);
#define fileo(a) freopen(a,"w",stdout);
#define fileio(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
#define eprintf(...) fprintf(stderr,__VA_ARGS__)
#define put(x) putchar(x)
#define eoln put('\n')
#define space put(' ')
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
inline int qpow(int x,int e,int _MOD){
int ans=1;
while(e){
if(e&1) ans=ans*x%_MOD;
x=x*x%_MOD;
e>>=1;
}
return ans;
}
int n=read();
vector<pii> g[1000005];
int p[1000005],q[1000005],dep[1000005],dp[1000005];
int dq[1000005],hd=1,tl=0;
inline double sl(int j,int k){
return 1.0*(dp[k]-dp[j])/(dep[k]-dep[j]);
}
inline int bsearch(double slo){
if(hd==tl) return dq[hd];
int l=hd,r=tl-1,ans=tl;
while(l<=r){
int mid=(l+r)>>1;
if(sl(dq[mid],dq[mid+1])>=slo) ans=mid,r=mid-1;
else l=mid+1;
}
return dq[ans];
}
inline void dfs(int x){
int y=bsearch(p[x]);
int curhd=hd,curtl=tl;
dp[x]=dp[y]+(dep[x]-dep[y])*p[x]+q[x];
while(hd<tl&&sl(dq[tl],dq[tl-1])>sl(dq[tl],x)) tl--;
int curq=dq[++tl];
dq[tl]=x;
foreach(it,g[x]){
int z=it->first,s=it->second;
dep[z]=dep[x]+s;
dfs(z);
}
hd=curhd,dq[tl]=curq,tl=curtl;
}
signed main(){
fz(i,2,n){
int f=read(),s=read();
p[i]=read(),q[i]=read();
g[f].push_back({i,s});
}
dfs(1);
fz(i,2,n) cout<<dp[i]<<endl;
return 0;
}
洛谷 P3994 高速公路(斜率优化)的更多相关文章
- 洛谷 P3994 高速公路
https://www.luogu.org/problemnew/show/P3994 设dp[i] 表示第i个城市到根节点的最小花费 dp[i]=min{ (dis[i]-dis[j])*P[i]+ ...
- 【洛谷p3994】Highway 二分+斜率优化DP
题目大意:给你一颗$n$个点的有根树,相邻两个点之间有距离,我们可以从$x$乘车到$x$的祖先,费用为$dis\times P[x]+Q[x]$,问你除根以外每个点到根的最小花费. 数据范围:$n≤1 ...
- 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化
https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...
- 洛谷P2221 高速公路【线段树】
题目:https://www.luogu.org/problemnew/show/P2221 题意:有n个节点排成一条链,相邻节点之间有一条路. C u v val表示从u到v的路径上的每条边权值都加 ...
- 斜率优化DP学习笔记
先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷 P5663 加工零件
题目传送门 解题思路: 最暴力的做法: bfs模拟,每次将一个阶段的所有点拿出来,将其所有直连的点都放进队列,知道本阶段结束,最后看1号点会不会在最后一个阶段被放入队列.(洛谷数据40分) 优化了一下 ...
随机推荐
- WeakMap与Map,使用WeakMap实现深拷贝循环引用问题
1.Map可以使用任意类型的key值,不限字符串,对象等. 2.WeakMap只能使用对象作为key值,是弱引用,当从WeakMap中移除时,会自动垃圾回收 3.Object只能用基本类型作为key值 ...
- JavaScript03
类型转换和运算符 typeof函数 检测数据类型,可以使用以下两种调用的方式: typeof 变量或表达式 typeof(变量或表达式) var n="asda"; console ...
- 2020BUAA软工热身作业
2020BUAA软工热身作业 17373010 杜博玮 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 热身作业 我在这个课程的目标是 学习软件工 ...
- 微信小程序 scroll-view 完成上拉加载更多
我们经常在软件客户端上看到这么一个功能,当我们阅读信息浏览到文章的末尾时,通常会加载出更多的信息.比如,我们在简书客户端上浏览推荐文章时,浏览到屏幕的末尾,此时又加载出了另一页的推荐文章,即实现了上拉 ...
- 带你用AVPlayer实现音频和视频播放
项目概述 以下项目是基于AVPlayer的实际运用,实现音频播放.横竖屏视频切换播放.类似抖音的竖屏全屏播放效果. 项目地址:AVPlayerAudioVideo 如果文章和项目对你有帮助,还请给个S ...
- 期望dp好题选做
前言: 最近连考两场期望dp的题目,sir说十分板子的题目我竟然一点也不会,而且讲过以后也觉得很不可改.于是开个坑. 1.晚测10 T2 大佬(kat) 明明有\(O(mlog)\)的写法,但是\(m ...
- C语言中都有哪些常见的数据结构你都知道几个??
上次在面试时被面试官问到学了哪些数据结构,那时简单答了栈.队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了一下几种常见的数据结构,原来我们学过的数据结构有这么多~ 首先,先来回顾下C语言中常见 ...
- 我的一些JAVA基础见解
这个学期学习JAVA基础课,虽说之前都自学过,但在学习时仍可以思考一些模糊不清的问题,可以更深一步的思考.在这里写下一些需要深入的知识点,对小白们也很友好~ 一.Java数据类型 1.基本数据类型 这 ...
- Java:final,finally 和 finalize 的区别
在Java中,final,final和finalize之间有许多差异.final,final和finalize之间的差异列表如下: No final finally finalize 1 final用 ...
- 图像原始格式(YUV444 YUV422 YUV420)一探究竟
前段时间搞x264编码测试,传参的时候需要告诉编码器我的原始数据格式是什么,其中在x264.h头文件中定义了如下一堆类型. /* Colorspace type */ #define X264_CSP ...