vjudge 题面传送门

首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算——\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博客中给出了详细证明,这里就不再赘述了。

考虑怎样将 LCM 转化为 gcd,注意到有个东西叫 Min-Max 容斥,即对于集合 \(S\),\(\max(S)=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|+1}\min(T)\),该性质同样可以应用于 lcm/gcd,因为 \(\operatorname{lcm}\) 即可看作每个数的每个质因子次数取 \(\max\),\(\gcd\) 即可看作每个数的每个质因子次数取 \(\min\),因此我们同样有 \(\operatorname{lcm}(S)=\prod\limits_{\varnothing\ne T\subseteq S}\gcd(T)^{(-1)^{|T|+1}}\),因此我们有 \(ans=\prod\limits_{\varnothing\ne T\subseteq S}f_{\gcd(T)}^{(-1)^{|T|+1}}\)。

到这里还是不太容易直接求,不过考虑有个东西叫莫比乌斯反演,我们记 \(a_d=\sum\limits_{\gcd(T)=d}(-1)^{|T|+1}\),再记 \(b_d=\sum\limits_{d\mid\gcd(T)}(-1)^{|T|+1}\),那么显然 \(ans=\prod\limits_{d}f_d^{a_d}\),接下来考虑怎样求 \(a_d\),按照莫比乌斯反演的套路有 \(b_d=\sum\limits_{d|n}a_n\),即 \(b=a*I\),反演以下可得 \(a=b*\mu\),即 \(a_d=\sum\limits_{d\mid n}b_n\mu(\dfrac{n}{d})\),枚举倍数即可求出 \(a_d\)。那么怎么求 \(b_d\) 呢?记 \(U=\{a_x|d\mid a_x\}\),那么显然所有 \(U\) 的子集都可以成为求和式中的 \(T\),即 \(b_d=\sum\limits_{i=1}^{|U|}\dbinom{|U|}{i}(-1)^i\),根据二项式定理该值就等于 \([|U|>0]\),随便算一下即可,时间复杂度 \(a_i\log a_i\)。

const int MAXV=1e6;
const int MOD=1000000007;
int qpow(int x,int e){
// eprintf("%d\n",e);
if(e<0) e+=MOD-1;int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,mu[MAXV+5],pr[MAXV/10+5],prcnt=0;
bitset<MAXV+5> vis;
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){pr[++prcnt]=i;mu[i]=-1;}
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0) break;
mu[i*pr[j]]=-mu[i];
}
}
}
int is[MAXV+5],f[MAXV+5],fib[MAXV+5];
int main(){
sieve(MAXV);scanf("%d",&n);
for(int i=1,x;i<=n;i++) scanf("%d",&x),is[x]=1;
for(int i=1;i<=MAXV;i++) for(int j=i;j<=MAXV;j+=i) is[i]|=is[j];
for(int i=1;i<=MAXV;i++) for(int j=i;j<=MAXV;j+=i) f[i]+=is[j]*mu[j/i];
fib[1]=fib[2]=1;for(int i=3;i<=MAXV;i++) fib[i]=(fib[i-1]+fib[i-2])%MOD;
int mul=1;for(int i=1;i<=MAXV;i++) mul=1ll*mul*qpow(fib[i],f[i])%MOD;
printf("%d\n",mul);
return 0;
}

51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)的更多相关文章

  1. 【51nod1355】斐波那契的最小公倍数(min-max容斥)

    [51nod1355]斐波那契的最小公倍数(min-max容斥) 题面 51nod 题解 显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算. \[lcm(S)=\prod_{T\su ...

  2. 51nod1355-斐波那契的最小公倍数【min-max容斥】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1355 题目大意 定义\(f_i\)表示斐波那契的第\(i\)项,给出一个 ...

  3. [51nod1355] 斐波那契的最小公倍数

    Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i ...

  4. 51nod 1242 斐波那契数列的第N项

    之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺 ...

  5. 51Nod - 1242 斐波那契(快速幂)

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  6. 51nod 1031+斐波那契和杨辉三角的一些基础知识

    直接斐波那契... #include<stdio.h> #include<queue> #include<string.h> #include<iostrea ...

  7. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  8. Solution -「51nod 1355」斐波那契的最小公倍数

    \(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorn ...

  9. 51nod 1350 斐波那契表示(递推+找规律)

    传送门 题意 分析 我们发现该数列遵循下列规律: 1 1,2 1,2,2 1,2,2,2,3 1,2,2,2,3,2,3,3 我们令A[i]表示f[i]开始长为f[i-1]的i的最短表示和 那么得到A ...

随机推荐

  1. kivy Label触发事件

    kivy  label也可以触发事件,为什么只有我这么无聊学垃圾kivy """ 在通过ref标记一段文本后点击这段文本就可以触发'on_ref_press'事件,在该事 ...

  2. elasticsearch的索引重建

    我们知道es在字段的mapping建立后就不可再次修改mapping的值.在我们实际的情况下有些时候就是需要修改mapping的值,解决方案就是重新构建索引数据. 方式一 : 使用索引别名,创建另外一 ...

  3. Python课程笔记(九)

    本次课程主要学习了Excel和JSON格式的一些读写操作.课程代码 一.Excel数据读写操作 1.安装模块 pip install xlrd pip install xlwt 网不好可以采用三方库: ...

  4. Asp.Net mvc4 +Spring

    添加相应的引用对象.(以下全部) 修改mvc的Global.asax文件内容 需要将控制器中原来需要new出来的对象改成属性成员 添加这个属性的注入对象 再去修改spring对web.config的一 ...

  5. Python | 标识符命名规范

    简单地理解,标识符就是一个名字,就好像我们每个人都有属于自己的名字,它的主要作用就是作为变量.函数.类.模块以及其他对象的名称. Python 中标识符的命名不是随意的,而是要遵守一定的命令规则,比如 ...

  6. cf Inverse the Problem (最小生成树+DFS)

    题意: N个点.N行N列d[i][j]. d[i][j]:结点i到结点j的距离. 问这N个点是否可能是一棵树.是输出YES,否则输出NO. 思路: 假设这个完全图是由一棵树得来的,则我们对这个完全图求 ...

  7. 第01课 OpenGL窗口(1)

    教程的这一节在2000年一月彻底重写了一遍.将会教您如何设置一个 OpenGL窗口.它可以只是一个窗口或是全屏幕的.可以任意 大小.任意色彩深度.此处的代码很稳定且很强大,您可以在您所有的OpenGL ...

  8. Centos7 误删除bin/sbin之类的恢复

    参考连接:https://blog.csdn.net/weixin_41843733/article/details/107468767 挂载对应版本的光盘进入急救模式,复制已经丢失的命令到/mnt/ ...

  9. 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有

    1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...

  10. hivesql笔记

    一.常用聚合函数 count():计数 count(distinct 字段) 去重统计 sum():求合 avg():平均 max():最大值 min():最小值 二.hivesql执行顺序 from ...