PyTorch 数据并行处理
PyTorch 数据并行处理
可选择:数据并行处理(文末有完整代码下载)
本文将学习如何用 DataParallel 来使用多 GPU。 通过 PyTorch 使用多个 GPU 非常简单。可以将模型放在一个 GPU:
device = torch.device("cuda:0")
model.to(device)
然后,可以复制所有的张量到 GPU:
mytensor = my_tensor.to(device)
请注意,只是调用 my_tensor.to(device) 返回一个 my_tensor 新的复制在GPU上,而不是重写 my_tensor。需要分配一个新的张量并且在 GPU 上使用这个张量。
在多 GPU 中执行前馈,后馈操作是非常自然的。尽管如此,PyTorch 默认只会使用一个 GPU。通过使用 DataParallel 让你的模型并行运行,可以很容易的在多 GPU 上运行操作。
model = nn.DataParallel(model)
这是整个教程的核心,接下来将会详细讲解。 引用和参数
引入 PyTorch 模块和定义参数
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
参数
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
实验(玩具)数据
生成一个玩具数据。只需要实现 getitem.
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
简单模型
为了做一个小 demo,模型只是获得一个输入,执行一个线性操作,然后给一个输出。尽管如此,可以使用 DataParallel 在任何模型(CNN, RNN, Capsule Net 等等.)
放置了一个输出声明在模型中来检测输出和输入张量的大小。请注意在 batch rank 0 中的输出。
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
创建模型并且数据并行处理
这是整个教程的核心。首先需要一个模型的实例,然后验证是否有多个 GPU。如果有多个 GPU,可以用 nn.DataParallel 来 包裹模型。然后使用 model.to(device) 把模型放到多 GPU 中。
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
输出:
Let's use 2 GPUs!
运行模型: 现在可以看到输入和输出张量的大小了。
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
输出:
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
结果:
如果没有 GPU 或者只有一个 GPU,当获取 30 个输入和 30 个输出,模型将期望获得 30 个输入和 30 个输出。但是如果有多个 GPU ,会获得这样的结果。
多 GPU
如果有 2 个GPU,会看到:
# on 2 GPUs
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
如果有 3个GPU,会看到:
Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
如果有 8个GPU,会看到:
Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
总结
数据并行自动拆分了数据并且将任务单发送到多个 GPU 上。当每一个模型都完成自己的任务之后,DataParallel 收集并且合并这些结果,然后再返回。
PyTorch 数据并行处理的更多相关文章
- PyTorch 60 分钟入门教程:数据并行处理
可选择:数据并行处理(文末有完整代码下载) 作者:Sung Kim 和 Jenny Kang 在这个教程中,我们将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多 ...
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- Pytorch数据读取框架
训练一个模型需要有一个数据库,一个网络,一个优化函数.数据读取是训练的第一步,以下是pytorch数据输入框架. 1)实例化一个数据库 假设我们已经定义了一个FaceLandmarksDataset数 ...
- Pytorch数据类型转换
Pytorch数据类型转换 载入模块生成数据 import torch import numpy as np a_numpy = np.array([1,2,3]) Numpy转换为Tensor a_ ...
- PyTorch数据加载处理
PyTorch数据加载处理 PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性. 1.下载安装包 scikit-image:用于图像的IO和变换 pandas:用于更容易地进行csv解 ...
- Pytorch数据读取详解
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler ...
- pytorch数据预处理错误
出错: Traceback (most recent call last): File , in <module> train_model(model_conv, criterion, o ...
- pytorch 数据操作
数据操作 在深度学习中,我们通常会频繁地对数据进行操作.作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作. 在PyTorch中,torch.Tensor是存储和变换数据的主要工具.如果你 ...
- Pytorch数据读取与预处理实现与探索
在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录 ...
随机推荐
- 关于js中的回调函数callback,通俗易懂
前言 其实我一直很困惑关于js 中的callback,困惑的原因是,学习中这块看的资料少,但是平时又经常见,偶尔复制一下前人代码,功能实现了也就不再去追其原由,这么着,这个callback的概念就越来 ...
- LA3942字典树+递推
题意: 给你一个字典,最多4000个单词,每个单词长度最多是100,然后给你一个串,问你这个子串可以被那些单词组合的组合数,比如字典里有4个单词a b ab cd,然后给你一个串abcd则a ...
- android The content of the adapter has changed but ListView did not receive a notification 错误的解决方案
使用了AsyncTask在后台刷新适配器,并且通知ui线程更新ListView,运行时发现时不时的出现 如题 的错误, 导致程序崩溃,解决方法如下: 1.建立一个缓冲数据集,这个数据集就是填充适配器的 ...
- vscode插件(摸鱼神器-小霸王游戏机
vscode插件(摸鱼神器-小霸王游戏机 步骤 vscode扩展搜索小霸王,点击下载即可. 使用 默认有一个demo小游戏,即超级玛丽. 本地仓库 可以通过local菜单上的添加按钮添加本地nes r ...
- 使用navicat连接阿里云上mysql
使用宝塔面板安装mysql Linux基本内容,里面有涉及到安装Mysql 修改密码 而且也要在数据库的菜单中设置root密码 修改后密码后进行登录,就不会出现下面的报错了 [root@centos7 ...
- Github镜像网站
https://hub.fastgit.org
- ERROR: Failed to Setup IP tables: Unable to enable SKIP DNAT rule
解释:执行docker-compose up -d时出现ERROR: Failed to Setup IP tables: Unable to enable SKIP DNAT rule 原因:防火墙 ...
- C# 变体(variance)
上节讲到了泛型,这节延申一下,讲一下变体. 变体(variance)是协变(convariance)和抗变(也说逆变contravariance)的统称.这个概念在.net 4中引入,在.net 2. ...
- Spark大数据处理框架入门(单机版)
导读 引言 环境准备 安装步骤 1.下载地址 2.开始下载 3.解压spark 4.配置环境变量 5.配置 spark-env.sh 6.启动spark服务 7.测试spark stay hungry ...
- 【建议收藏】缺少 Vue3 和 Spring Boot 的实战项目经验?我这儿有啊!
缺少 Vue3 和 Spring Boot 的实战项目经验?缺少学习项目和练手项目?我这儿有啊! 从 2019 年到 2021 年,空闲时间里陆陆续续做了一些开源项目,推荐给大家啊!记得点赞和收藏噢! ...