PyTorch 数据并行处理
PyTorch 数据并行处理
可选择:数据并行处理(文末有完整代码下载)
本文将学习如何用 DataParallel 来使用多 GPU。 通过 PyTorch 使用多个 GPU 非常简单。可以将模型放在一个 GPU:
device = torch.device("cuda:0")
model.to(device)
然后,可以复制所有的张量到 GPU:
mytensor = my_tensor.to(device)
请注意,只是调用 my_tensor.to(device) 返回一个 my_tensor 新的复制在GPU上,而不是重写 my_tensor。需要分配一个新的张量并且在 GPU 上使用这个张量。
在多 GPU 中执行前馈,后馈操作是非常自然的。尽管如此,PyTorch 默认只会使用一个 GPU。通过使用 DataParallel 让你的模型并行运行,可以很容易的在多 GPU 上运行操作。
model = nn.DataParallel(model)
这是整个教程的核心,接下来将会详细讲解。 引用和参数
引入 PyTorch 模块和定义参数
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
参数
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
实验(玩具)数据
生成一个玩具数据。只需要实现 getitem.
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
简单模型
为了做一个小 demo,模型只是获得一个输入,执行一个线性操作,然后给一个输出。尽管如此,可以使用 DataParallel 在任何模型(CNN, RNN, Capsule Net 等等.)
放置了一个输出声明在模型中来检测输出和输入张量的大小。请注意在 batch rank 0 中的输出。
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
创建模型并且数据并行处理
这是整个教程的核心。首先需要一个模型的实例,然后验证是否有多个 GPU。如果有多个 GPU,可以用 nn.DataParallel 来 包裹模型。然后使用 model.to(device) 把模型放到多 GPU 中。
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
输出:
Let's use 2 GPUs!
运行模型: 现在可以看到输入和输出张量的大小了。
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
输出:
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
结果:
如果没有 GPU 或者只有一个 GPU,当获取 30 个输入和 30 个输出,模型将期望获得 30 个输入和 30 个输出。但是如果有多个 GPU ,会获得这样的结果。
多 GPU
如果有 2 个GPU,会看到:
# on 2 GPUs
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
如果有 3个GPU,会看到:
Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
如果有 8个GPU,会看到:
Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
总结
数据并行自动拆分了数据并且将任务单发送到多个 GPU 上。当每一个模型都完成自己的任务之后,DataParallel 收集并且合并这些结果,然后再返回。
PyTorch 数据并行处理的更多相关文章
- PyTorch 60 分钟入门教程:数据并行处理
可选择:数据并行处理(文末有完整代码下载) 作者:Sung Kim 和 Jenny Kang 在这个教程中,我们将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多 ...
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- Pytorch数据读取框架
训练一个模型需要有一个数据库,一个网络,一个优化函数.数据读取是训练的第一步,以下是pytorch数据输入框架. 1)实例化一个数据库 假设我们已经定义了一个FaceLandmarksDataset数 ...
- Pytorch数据类型转换
Pytorch数据类型转换 载入模块生成数据 import torch import numpy as np a_numpy = np.array([1,2,3]) Numpy转换为Tensor a_ ...
- PyTorch数据加载处理
PyTorch数据加载处理 PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性. 1.下载安装包 scikit-image:用于图像的IO和变换 pandas:用于更容易地进行csv解 ...
- Pytorch数据读取详解
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler ...
- pytorch数据预处理错误
出错: Traceback (most recent call last): File , in <module> train_model(model_conv, criterion, o ...
- pytorch 数据操作
数据操作 在深度学习中,我们通常会频繁地对数据进行操作.作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作. 在PyTorch中,torch.Tensor是存储和变换数据的主要工具.如果你 ...
- Pytorch数据读取与预处理实现与探索
在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录 ...
随机推荐
- DVWA之Command injection(命令执行漏洞)
目录 Low Medium Middle Impossible 命令执行漏洞的原理:在操作系统中, & .&& .| . || 都可以作为命令连接符使用,用户通过浏览器 ...
- hdu5248序列变换(二分+贪心)基础题
题意(中文的直接粘题意吧) 序 ...
- 【vue-08】vuex
vuex的作用 简单理解,就是将多个组件共享的变量统一放到一个地方去管理,比如用户登录时的数据token. 快速上手 安装:npm install vuex 首先,我们在src文件夹下创建一个文件夹: ...
- 安装和简单使用apidoc
安装nodejs 参考链接 安装apidoc 参考链接 使用 https://www.bilibili.com/video/BV1MW411Q7g4 https://www.bilibili.com/ ...
- Hive企业级性能优化
Hive作为大数据平台举足轻重的框架,以其稳定性和简单易用性也成为当前构建企业级数据仓库时使用最多的框架之一. 但是如果我们只局限于会使用Hive,而不考虑性能问题,就难搭建出一个完美的数仓,所以Hi ...
- Mybatis学习之自定义持久层框架(五) 自定义持久层框架:封装CRUD操作
前言 上一篇文章我们完成了生产sqlSession的工作,与数据库的连接和创建会话的工作都已完成,今天我们可以来决定会话的内容了. 封装CRUD操作 首先我们需要创建一个SqlSession接口类,在 ...
- Windows进程间通讯(IPC)----WM_COPYDATA
WM_COPYDATA通讯思路 通过向其他进程的窗口过程发送WM_COPYDATA消息可以实现进程间通讯. 只能通过SendMessage发送WM_COPYDATA消息,而不能通过PostMessag ...
- path自定义转换器
register-converter用于注册转换器
- [Qt] 项处理组件
项(Item):一个项存储了文字.文字的格式.自定义数据等. 1.项视图(Item View) 针对一个数据模型,可能有不同的展示需求,如文件夹中图片 ...
- [Python] 可变/不可变类型 & 参数传递
与c/c++不同,Python/Java中的变量都是引用类型,没有值类型 Python赋值语句由三部分构成,例如: int a = 1 类型 标识 值 标识(identity):用于唯一标识 ...