NTT

先学习FFT

由于FFT是使用复数运算,精度并不好,而且也无法取模,所以有了NTT(快速数论变换)。

建议先完全理解FFT后再学习NTT。

原根

NTT使用与单位根性质相似的原根来代替单位根。

定义:设\(m\)是正整数,\(a\)是整数,若\(a\)模\(m\)的阶等于\(φ(m)\),则称\(a\)为模\(m\)的一个原根。

如果你不知道阶

定义:对于\(an≡1(modp)an≡1(modp)\)最小的\(n\),我们称之为\(a\)模\(p\)的阶,记做\(δp(a)\)

如果你懒得看麻烦的定义,可以直接从这里开始看。

\(g\)表示质数\(p\)的原根

998244353 的原根是3,3在模998244353的逆元是332748118。

最最重要的性质我不会证但我会背:

\[\omega_n\equiv g^{\frac{p-1}n}\mod p
\]

NTT

所以我们直接用\(g\)代替\(\omega_n\)做FFT就好了。

做IFFT时就用\(g\)的逆元做就好了。

还是别忘记乘\(\frac 1 N\)

掌握了FFT,NTT还是很简单的。

void ntt(ll *a,int type)
{
for(int i=0;i<lim;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int mid=1;mid<lim;mid<<=1)
{
ll wn=qp(type?g:gi,(mod-1)/(mid<<1));
for(int i=0;i<lim;i+=(mid<<1))
{
ll w=1;
for(int j=0;j<mid;j++,w=w*wn%mod)
{
ll x=a[i+j],y=w*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod;
a[i+j+mid]=(x-y+mod)%mod;
}
}
}
if(!type)
{
ll inv=qp(lim,mod-2);
for(int i=0;i<lim;i++)
a[i]=(a[i]*inv)%mod;
}
}

NTT 快速数论变换的更多相关文章

  1. [学习笔记]NTT——快速数论变换

    先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...

  2. 模板 NTT 快速数论变换

    NTT裸模板,没什么好解释的 这种高深算法其实也没那么必要知道原理 #include <cstdio> #include <cstring> #include <algo ...

  3. 【算法】快速数论变换(NTT)初探

    [简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...

  4. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  5. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

  6. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  7. JZYZOJ 2041 快速数论变换 NTT 多项式

    http://172.20.6.3/Problem_Show.asp?id=2041 https://blog.csdn.net/ggn_2015/article/details/68922404 代 ...

  8. $NTT$(快速数论变换)

    - 概念引入 - 阶 对于$p \in N_+$且$(a, \ p) = 1$,满足$a^r \equiv 1 (mod \ p)$的最小的非负$r$为$a$模$p$意义下的阶,记作$\delta_p ...

  9. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

随机推荐

  1. 音视频中的PTS和DTS及同步

    视频的播放过程可以简单理解为一帧一帧的画面按照时间顺序呈现出来的过程,就像在一个本子的每一页画上画,然后快速翻动的感觉.       但是在实际应用中,并不是每一帧都是完整的画面,因为如果每一帧画面都 ...

  2. python 银行管理系统

    这是一个使用python连接mysql的例子 涉及到类的使用 import pymysql import function as f def mysql(): db=pymysql.connect(h ...

  3. mysql导入文件 日期时间报错:[Err] 1067 - Invalid default value for 'active_time'

    报错原因意思是说:mysql5.7版本中有了一个STRICT mode(严格模式),而在此模式下默认是不允许设置日期时间的值为全0值的,所以想要  解决这个问题,就需要修改sql_mode的值. 修改 ...

  4. LocalDate转换成Date

    LocalDate nowLocalDate = LocalDate.now(); Date date = Date.from(nowLocalDate.atStartOfDay(ZoneOffset ...

  5. JAVA使用百度链接实时推送API提交链接

    官网地址:http://data.zz.baidu.com/ 百度推广API的token获取 http://data.zz.baidu.com/site/index 填写完之后会进行验证, 验证完之后 ...

  6. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  7. Improved Variational Inference with Inverse Autoregressive Flow

    目录 概 主要内容 代码 Kingma D., Salimans T., Jozefowicz R., Chen X., Sutskever I. and Welling M. Improved Va ...

  8. Dubbo为什么要用Go重写?

    先说两句 我常常在散步时思考很多技术上的「为什么问题」,有时一个问题会想很久,直到问题的每一个点都能说服自己时,才算完结.于是想把这些思考记录下来,形成文章,可以当做一个新的系列.这些文章中你可能看不 ...

  9. 基于Spring MVC + Spring + MyBatis的【银行账户信息管理系统】

    资源下载:https://download.csdn.net/download/weixin_44893902/45604661 练习点设计: 模糊查询.删除.新增.修改 一.语言和环境 实现语言:J ...

  10. Java初学者作业——编写JAVA程序,根据用户输入课程名称,输出对应课程的简介,各门课程的简介见表

    返回本章节 返回作业目录 需求说明: 编写JAVA程序,根据用户输入课程名称,输出对应课程的简介,各门课程的简介见表 课程名称 课程简介 JAVA课程 JAVA语言是目前最流行的编写语言,在本课程中将 ...