T2count题解

【 问题描述】:

小 A 是一名热衷于优化各种算法的 OIER,有一天他给了你一个随机生成的 1~n 的排列, 并定 义区间[l,r]的价值为:

\[\huge C_{l,r}=\max(a_i-a_j|l \le i,j \le r )
\]

他想请你告诉他, 所有区间的价值的总和为多少

【 输入】

第一行一个数 T(<=10), 表示数据组数 对于每一组数据: 第一行一个数 n( 1<=n,m<=100,000) 第二行 n 个数 a1...an, 表示一个 1~n 的随机的排列

【 输出】

对于每组数据输出一个数, 表示答案

【 输入样例】

1
4
3 2 4 1

【 输出样例】

14

【 数据范围】

对于 60%的数据: n<=1000

对于 100%的数据, n<=100,000

我们先看普通的暴力:

让\(mi[l][r]\)表示从\(l\)到\(r\)区间的最小值

让\(mx[l][r]\)表示从\(l\)到\(r\)区间的最大值

则答案为:

\[\large \sum_{l=1}^{n}\sum_{r=l}^{n}(mx[l][r]-mi[l][r])
\]

但是仔细观察式子我们可以发现:

\[\sum_{l=1}^{n}\sum_{r=l}^{n}(mx[l][r]-mi[l][r])=\sum_{l=1}^{n}\sum_{r=l}^{n}mx[l][r]-\sum_{l=1}^{n}\sum_{r=l}^{n}mi[l][r]
\]

然后mx和mi的部分我们可以单独求

所以以最大值为例子

一个点可以管辖的范围为左边第一个比他大的点到右边第一个比他大的点

我们设\(l[i]\)为左边第一个比\(a[i]\)大的位置\(r[i]\)为右边第一个比\(a[i]\)大的位置

则只要满足\(l[i]<x\le i\)并且\(i\le y <r[i]\)的所有区间\([x,y]\)的最小大值都为i

所以这一部分区间我们把它乘起来

然后所有区间最大值的和为

\[\large \sum_{i=1}^{n}(r[i]-i)\times(i-l[i])\times a[i]
\]

最小值同理

然后求靠左/右的第一个比他大/小的数就可以用单调栈来解决

最后把最大值的和和最小值的和相减就是答案

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define int long long
#define clear(x) memset(x,0,sizeof x)
const int maxn=1e5+5;
int read(){
int s=0,f=1;char ch;
while(!isdigit(ch=getchar()))(ch=='-')&&(f=-1);
for(s=ch-'0';isdigit(ch=getchar());s=s*10+ch-'0');
return s*f;
}
int a[maxn];
int s1[maxn],t1;
int l[maxn],r[maxn];
int n;
int ans=0;
inline void clearlr(){for(int i=1;i<=n;++i){l[i]=0;r[i]=n+1;}}
signed main(){
#ifndef nFILE
freopen("count.in","r",stdin);
freopen("count.out","w",stdout);
#endif
int T=read();
while(T--){
ans=0;
n=read();
clear(a);
for(int i=1;i<=n;++i){(a[i]=read());}
clear(s1);t1=0;
clearlr();
for(int i=1;i<=n;++i){
while(t1&&a[s1[t1]]<a[i])r[s1[t1--]]=i;
s1[++t1]=i;
}
clear(s1);t1=0;
for(int i=n;i;--i){
while(t1&&a[s1[t1]]<a[i])l[s1[t1--]]=i;
s1[++t1]=i;
}
for(int i=1;i<=n;++i){ans+=(r[i]-i)*(i-l[i])*a[i];}
clear(s1);t1=0;
clearlr();
for(int i=1;i<=n;++i){
while(t1&&a[s1[t1]]>a[i])r[s1[t1--]]=i;
s1[++t1]=i;
}
clear(s1);t1=0;
for(int i=n;i;--i){
while(t1&&a[s1[t1]]>a[i])l[s1[t1--]]=i;
s1[++t1]=i;
}
for(int i=1;i<=n;++i){ans-=(r[i]-i)*(i-l[i])*a[i];}
cout<<ans<<endl;
}
return 0;
}

noip提高组模拟赛(QBXT)T2的更多相关文章

  1. 10-18 noip提高组模拟赛(codecomb)T2贪心

    T2:找min:一直找最小的那个,直到a[i]-x+1小于0,就找次小的,以此类推: 求max,也是一样的,一直到最大的那个,直到次大的比之前最大的大,就找次大的: 这个模拟,可以用上priority ...

  2. 计蒜客 2017 NOIP 提高组模拟赛(四)Day1 T2 小X的密室

    https://nanti.jisuanke.com/t/17323 小 X 正困在一个密室里,他希望尽快逃出密室. 密室中有 N 个房间,初始时,小 X 在 1号房间,而出口在 N号房间. 密室的每 ...

  3. 10-18 noip提高组模拟赛(codecomb)T1倍增[未填]

    T1只想到了找环,> <倍增的思想没有学过,所以看题解看得雨里雾里的(最近真的打算学一下! 题目出的挺好的,觉得noip极有可能出现T1T2T3,所以在此mark 刚开始T1以为是模拟,还 ...

  4. [LUOGU] NOIP提高组模拟赛Day1

    题外话:以Ingress为题材出的比赛好评,绿军好评 T1 考虑枚举第\(i\)个人作为左边必选的一个人,那左边剩余\(i-1\)个人,选法就是\(2^{i-1}\),也就是可以任意选或不选,右侧剩余 ...

  5. l洛谷 NOIP提高组模拟赛 Day2

    传送门 ## T1 区间修改+单点查询.差分树状数组. #include<iostream> #include<cstdio> #include<cstring> ...

  6. HGOI2010816 (NOIP 提高组模拟赛 day1)

    Day1 210pts(含T1莫名的-10pts和T3莫名的-30pts) 100+70+40=210 rank 29 这道题第一眼看是字符串匹配问题什么KMP啊,又想KMP不会做啊,那就RK Has ...

  7. HGOI20180815 (NOIP 提高组模拟赛 day2)

    Day 2 rank 11 100+35+30=165 本题是一道数论题,求ax+by=c的正整数对(x,y) x>=0并且y>=0 先说下gcd: 求a,b公约数gcd(a,b) 如gc ...

  8. 【洛谷】NOIP提高组模拟赛Day2【动态开节点/树状数组】【双头链表模拟】

    U41571 Agent2 题目背景 炎炎夏日还没有过去,Agent们没有一个想出去外面搞事情的.每当ENLIGHTENED总部组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了.只有不 ...

  9. 【洛谷】NOIP提高组模拟赛Day1【组合数学】【贪心+背包】【网络流判断是否满流以及流量方案】

    U41568 Agent1 题目背景 2018年11月17日,中国香港将会迎来一场XM大战,是世界各地的ENLIGHTENED与RESISTANCE开战的地点,某地 的ENLIGHTENED总部也想派 ...

随机推荐

  1. 混合开发Js bridge新秀-DSBridge iOS篇

    这个DSBridge 和我之前开发做的混合开发 用的方式 很相似,所以觉得很是不错,推荐给你大家. DSBridge-IOS:https://github.com/wendux/DSBridge-IO ...

  2. Java-集合条件筛选

    import java.lang.reflect.Field; import java.lang.reflect.Modifier; import java.util.ArrayList; impor ...

  3. 14. Longest Common Prefix 最长的公共字符串开头

    [抄题]: Write a function to find the longest common prefix string amongst an array of strings. 在 " ...

  4. linux系统中的命令替换与整数运算$(),$(())

    一.$()与`` 在 bash shell 中,$( ) 与 ` ` (反引号) 都是用来做命令替换(command substitution)用的. 所谓的命令替换与我们第五章学过的变量替换差不多, ...

  5. sudo问题汇总

    1. 注释Defaults requiretty Defaults requiretty修改为 #Defaults requiretty, 表示不需要控制终端. 否则会出现sudo: sorry, y ...

  6. mybaties association 只返回一个结果问题处理

    mybatis xml文件为: <resultMap id="BaseResultMap" type="com.test.SubscribeOrder"& ...

  7. DOM0级与DOM2级

    定义: 0级DOM 分为2个:一是在标签内写onclick事件  二是在JS写onlicke=function(){}函数 1) <input id="myButton" t ...

  8. Mysql建表的时候创建索引

    创建表时可以直接创建索引,这种方式最简单.方便.其基本形式如下: CREATE TABLE 表名( 属性名 数据类型[完整性约束条件], 属性名 数据类型[完整性约束条件], ...... 属性名 数 ...

  9. Servlet面试题

    Servlet运行在Servlet容器中,其生命周期由容器来管理.Servlet的生命周期通过javax.servlet.Servlet接口中的init().service()和destroy()方法 ...

  10. jQuary总结1:jQuary的优点和地位

    1 什么是jQuery? jQuery是一个快速,小巧,功能丰富的JavaScript库. javascript库: 就是存放javascript代码的仓库 jQuery作为一个迭代多年的优秀框架,是 ...