【题意】给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反。每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数。n,k<=10^5。

【算法】期望DP

【题解】对于当前状态,编号最大的亮灯必须通过操作自身灭掉

证明:假设通过操作编号更大的灯灭掉,那么编号更大的灯只能通过操作自己灭掉,则与原来状态无区别,得证。

运用这个结论,每次灭掉最大编号的灯后的局面中,编号最大的灯一定严格小于原最大灯,所以至多需要n次操作。

从大到小,处理出m盏待操作灯,这样一个局面就可以描述成待操作灯的数目,从而考虑期望DP。

最直观地,设f[i]表示剩余 i 盏操作灯的期望步数,根据全期望公式:

$$f[i]=\frac{i}{n}*f[i-1]+\frac{n-i}{n}*f[i+1]+1$$

等等,高斯消元?不资瓷!我们想办法变成单方向DP,去掉f[i-1]。

设f[i]表示从 i 盏待操作灯变成 i-1 盏待操作灯的期望步数,那么根据全期望公式:(省略i/n*0)

$$f[i]=\frac{n-i}{n}*(f[i+1]+f[i])+1$$

好啦!移项即可计算f[i],最后:

$$ans=\sum_{i=k+1}^{m}f[i]*n!$$

复杂度O(n√n)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=,MOD=;
int n,m,k,ans,a[maxn],f[maxn];
void exgcd(int a,int b,int &x,int &y){if(!b){x=;y=;}else{exgcd(b,a%b,y,x);y-=x*(a/b);}}
int inv(int a){int x,y;exgcd(a,MOD,x,y);return (x%MOD+MOD)%MOD;}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=n;i>=;i--)if(a[i]){
m++;
for(int j=;j*j<=i;j++)if(i%j==){
if(j*j==i)a[j]^=;else a[j]^=,a[i/j]^=;
}
}
for(int i=n;i>k;i--)f[i]=(n+1ll*(n-i)*f[i+]%MOD)*inv(i)%MOD;
if(m<=k)ans=m;else{
for(int i=m;i>k;i--)ans=(ans+f[i])%MOD;
ans=(ans+k)%MOD;
}
for(int i=;i<=n;i++)ans=1ll*ans*i%MOD;
printf("%d",ans);
return ;
}

【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP的更多相关文章

  1. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  2. BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP

    显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...

  3. bzoj 4872: [Shoi2017]分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  4. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  5. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  6. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  7. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  8. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  9. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

随机推荐

  1. Rsyslog初步学习

    一.Rsyslog整体架构 Rsyslog消息流:输入模块——>预处理模块——>主队列——>过滤模块——>执行队列——>输出模块 1. 输入模块 输入模块是消息来源 2. ...

  2. HashMap和HashTable源码分析

    HashMap HashMap是一个实现了Map接口的Hash表.提供所有Map的操作,并且允许null key和null value.HashMap几乎等同于HashTable,只不过HashMap ...

  3. Android Studio- 把项目提交到SVN中操作方法

    第一步 下载SVN,下载完成之后,需要吧command line client tools点击修改安装 然后Crash Reporter点击选择取消安装 如果不进行该操作,则可能在C:\Program ...

  4. Android定位测试(深坑)

    问题:我们是一个海外app,市场部去马来西亚打开那边的市场,发现了一个问题,就是我们的app定位有问题,还是成都的定位,主要原因是在马来西亚使用这个app,请求中带的经纬度参数是成都的,导致服务器返回 ...

  5. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  6. 【Java】list转换json的中文乱码问题

    添加如图红框内容

  7. 各行业最受欢迎的编程语言,硬件最青睐C和C++

    近日,HackerRank发布了2018年开发技能报告,其中探讨了一些对理解开发人员环境至关重要的事情,本文将摘录编程语言排行部分 2018 开发者技能调查:不同行业中最热门的编程语言 尽管新语言经常 ...

  8. oracle 远程登录sqlplus TNS:无监听

    1.将localhost 改成 计算机名 best-PC,或者ip地址 .  我修改成计算机名,因为经常在无线网络和有限网络之间切换 SID_LIST_LISTENER =  (SID_LIST =  ...

  9. Hive(六)hive执行过程实例分析与hive优化策略

    一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.useri ...

  10. poj1850 Code

    Code Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10059   Accepted: 4816 Description ...