假设检验的标准步骤:

1、建立假设:根据问题的需要提出原假设H0,以及其对立面备择假设H1

2、确立检验水准:即设立小概率事件的界值α。

3、进行试验:得到用于统计分析的样本,以该试验的结果作为假设检验的根据。

4、选定检验方法,计算检验统计量。

5、确定P值。

原假设也称为零假设,备择假设也称为对立假设。对立假设就是对立于原假设,备择假设的意思是,一旦你决定不采纳原假设,则这假设可备你选择。

根据统计学观点,接受原假设和否定原假设,二者的意义并非对等。接受原假设只是意味着,按所获数据来看,并无足够的根据认为原假设不对,而不是说,从所获数据证明了原假设是对的,因此,问题多少仍处于未决的局面。反之,否定原假设则意味着,按所获数据有充足理由(而非绝对地证明,因为数据有随机性)认为原假设不对,即有充足理由认为对立假设成立。故在一定限度内,可以说问题由了一个明确的结论。

假设检验的基本思想是统计学的“小概率反证法”原理:对于一个小概率事件而言,其对立面发生的可能性显然要大大高于这一小概率事件,可以认为小概率事件在一次试验中不应当发生。

假设检验除了分为单/双侧检验外,还可以分为参数检验和非参数检验。参数检验是已知数据的分布形式,只是不了解相应参数时的检验形式。如果数据的分布形式不了解,就必须使用非参数检验确定数据的分布形式。下面将介绍几种常用分布的假设检验。

一、正态分布的检验

正太分布的考察方法有:通过计算偏度系数和峰度系数加以考察;通过绘制直方图、PP图等图形工具来考察;也可以进行各种假设检验。最常用的就是K-S单样本检验。

K-S检验通过对两个分布之间的差异的分析,判断样本的观察结果是否来自制定分布的总体。计算P值的公式比较复杂,可不必深究。

分析者可以直接使用K-S检验对样本数据进行正态分布的检验,但值得推荐的第一步是对样本数据进行图形描述,图形可以给分析者一个直观的印象:该数据可能服从什么样的分布类型。

文彤老师的书中对消费者信心指数进行了K-S检验,大致步骤是“分析”——“非参数检验”——“单样本”……,当然首先要选择个案:数据——选择个案——如果条件满足time=200704。然后再进行K-S检验,我的SPSS可能由于版本问题,运行时出现“停止执行该命令”。但是使用旧对话框是可以的,分析——非参数检验——旧对话框——1样本K-S。

文彤老师对检验结果的批注很值得一读:既然此处拒绝了正态分布假设,那么分析时还可以使用如t检验等对变量分布有要求的方法吗?事实上,K-S检验从实用性角度来说远不如图形工具,因为在样本量少的时候它不够敏感,而样本量大时又总是过于敏感。本例就属于敏感过头的情况,实际上读者们只需要绘制P-P图就可以发现,该数据实际上是基本符合正态分布趋势的,进行后续数据分析时遵循正态分布的分析思路应当不会有任何问题。

二、二项分布检验

二项分布检验是对二分类变量的拟合优度检验,用于考察每个类别中观察值的频数与特定分布下的预期频数间是否存在统计学差异。例子详见参考资料1。

三、游程检验

游程检验是对二分变量的随机检验,判断观察值的顺序是否为随机的。

文彤老师提醒: 在对连续性变量进行游程检验时,采用不同的分割点,就可能得到截然不同的分析结果,因此在实际分析中,应当尽可能多取几个在专业背景上有实际意义的数值作为分割点,比较其游程检验的结果,以得到对序列随机性更为稳健和客观的结论。

参考资料:

1. 张文彤. 《SPSS统计分析基础教程》

2. 陈希孺. 《统计学漫话》

SPSS 分布类型的检验的更多相关文章

  1. t分布与t检验的一点理解

    最近又遇到了t分布及t检验方面的内容,发现有些地方自己当初没有很明白,就又查了些资料,加深了一下自己的理解,这里也将自己的一些理解记录下来. 1. 理论基础--大数定理与中心极限定理        在 ...

  2. SPSS数据分析——t检验

    SPSS中t检验全都集中在分析—比较均值菜单中.关于t检验再简单说一下,我们知道一个统计结果需要表达三部分内容,即集中性.变异性.显著性. 集中性的表现指标是均值变异的的表现指标是方差.标准差或标准误 ...

  3. 柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)

    柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同. 在进行cumulative probab ...

  4. SPSS-非参数检验—两独立样本检验 案例解析

    今天跟大家研究和分享一下:spss非参数检验——两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺 ...

  5. Tests for normality正态分布检验

    欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/ ...

  6. 常见的概率分布类型(Probability Distribution)

    统计学中最常见的几种概率分布分别是正态分布(normal distribution),t分布(t distribution),F分布(F distribution)和卡方分布(χ2 distribut ...

  7. SPSS-比较均值-独立样本T检验 案例解析

    在使用SPSS进行单样本T检验时,很多人都会问,如果数据不符合正太分布,那还能够进行T检验吗?而大样本,我们一般会认为它是符合正太分布的,在鈡型图看来,正太分布,基本左右是对称的,一般具备两个参数,数 ...

  8. 《spss统计分析与行业应用案例详解》:实例十二 卡方检验

    卡方检验的功能与意义 SPSS的卡方检验是非参数检验方法的一种,其基本功能足通过样本的 频数分布来推断总体是否服从某种理论分布或某种假设分布,这种检验过程是通过分析实际的频数与理论的频数之间的差别或是 ...

  9. Python验证数据的抽样分布类型

    假如要对一份统计数据进行分析,一般其来源来自于社会调研/普查,所以数据不是总体而是一定程度的抽样.对于抽样数据的分析,就可以结合上篇统计量及其抽样分布的内容,判断数据符合哪种分布.使用已知分布特性,可 ...

随机推荐

  1. python数据分析基础——numpy和matplotlib

    numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2假如有如下几组体重和身高数据,让求每组数据的BMI值: w ...

  2. mysql表的完整性约束

    概览 为了防止不符合规范的数据进入数据库,在用户对数据进行插入.修改.删除等操作时,DBMS自动按照一定的约束条件对数据进行监测, 使不符合规范的数据不能进入数据库,以确保数据库中存储的数据正确.有效 ...

  3. 关于编译openjdk过程的一个编码错误

    -Xlint:deprecation 重新编译 或者 错误: 编码ascii的不可映射字符 出现这种错误的时候 可以进行设置jdk编译编码即可解决 因为是编译openjdk  所以在环境变量中设置: ...

  4. maya布料预设解析

    今天做了一天布料.数值都是自己在那调整.结果发现maya自带预设,基本有些都不用调整,直接预设,效果非常不错.累死累活半天. 下来看看  预设 解析吧 ncloth新布料系统是 Maya 8.0 后新 ...

  5. SQL学习笔记。

    数据库视图: 视图是虚表,是从一个或几个基本表(或视图)中导出的表,在系统的数据字典中仅存放了视图的定义,不存放视图对应的数据. 视图是原始数据库数据的一种变换,是查看表中数据的另外一种方式.可以将视 ...

  6. html5游戏开发-零基础开发《圣诞老人送礼物》小游戏

    开言: 以前lufy前辈写过叫“ HTML5游戏开发-零基础开发RPG游戏”的系列文章,在那里面我学习了他的引擎以及了解了游戏脚本.自从看了那几篇文章,我便对游戏开发有了基本的认识.今天我也以零基础为 ...

  7. AngularJS 笔记系列(三)模块和作用域

    模块: 在 AngularJS 中,将函数代码全部都定义在全局命名空间中绝对不是什么好主意,全局变量污染会使冲突几率变大,调试困难,降低开发效率.上次写计时器的 controller 时,我们把 co ...

  8. 简单认识python的数据类型和语法

    一.Python介绍 1用途 1)WEB开发 最火的Python web框架Django, 支持异步高并发的Tornado框架,短小精悍的flask,bottle, Django官方的标语把Djang ...

  9. 如何修改opencart的模版适合为mycncart系统使用

    如何修改opencart的模版适合为mycncart系统使用 mycncart跟随opencart的最新代码不断进行升级,并改造和不断加入中国特色的功能,因此opencart的模版均不能够拿来直接套用 ...

  10. SecureCRT 7在ubuntu下的破解方法

    主要破解方法: http://www.boll.me/archives/599 http://www.boll.me/archives/680