01背包--hdu2639
hdu-2639
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
Sample Output
12
2
0
题目大意
有n块骨头,V容量的背包,把骨头放进包里,求价值第k大时是多少。
思路
就是个01背包的变种,根据dp思想,在01背包的基础上加多一个维度,dp[j][k]表示容量为j的背包下,第k大的价值。
首先考虑第1大的数,是max(dp[i][j], dp[i - 1][j - c[i]] + w[i])
可以推断,第k大的值可以在两组数dp[i][j][z]、dp[i - 1][j - c[i]][z] + w[i],z∈[1, ... , k]中得到
然而并不能直接知道这两组数中前k大的数,所以将dp[i][j][z]放入A[],将dp[i - 1][j - c[i]][z] + w[i]放入B[]
然后将A[]、B[]两组数一起排序,就能得到第k大的数
代码
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <algorithm>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 1005;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
int main()
{
int T;
cin >> T;
while(T--)
{
LL n, V, K;
cin >> n >> V >> K;
LL w[N], c[N];
for(int i = 1;i <= n;++i)
cin >> w[i];
for(int i = 1;i <= n;++i)
cin >> c[i];
LL dp[N][35];
memset(dp, 0, sizeof(dp));
for(int i = 1;i <= n;++i)
{
for(int j = V;j >= c[i];--j)
{
LL A[35], B[35];
int a, b, num;
for(int k = 1;k <= K;++k)
{
A[k] = dp[j - c[i]][k] + w[i];
B[k] = dp[j][k];
}
A[K + 1] = B[K + 1] = -1;//-1 < 0。a <= K做判断条件会出错
a = b = num = 1;
while(num <= K && (A[a] != -1 || B[b] != -1))
{
if(A[a] > B[b])
dp[j][num] = A[a++];
else
dp[j][num] = B[b++];
if(dp[j][num] != dp[j][num - 1])
num++;
}
}
}
cout << dp[V][K] << endl;
}
return 0;
}
01背包--hdu2639的更多相关文章
- dp之01背包hdu2639(第k优解)
http://acm.hdu.edu.cn/showproblem.php?pid=2639 题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值.......(注意,不要 和它的第一题混 ...
- HDU2639(01背包第K大)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU--2639 Bone Collector II(01背包)
题目http://acm.hdu.edu.cn/showproblem.php?pid=2639 分析:这是求第K大的01背包问题,很经典.dp[j][k]为背包里面装j容量时候的第K大的价值. 从普 ...
- NO11——01背包
# include <stdio.h> # include <stdlib.h> # include <string.h> # define max(x,y) x& ...
- HDU 2639 Bone Collector II【01背包 + 第K大价值】
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...
- UVALive 4870 Roller Coaster --01背包
题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F , D -= K 问在D小于等于一定限度的时 ...
- POJ1112 Team Them Up![二分图染色 补图 01背包]
Team Them Up! Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7608 Accepted: 2041 S ...
- Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)
传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...
- 51nod1085(01背包)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1085 题意: 中文题诶~ 思路: 01背包模板题. 用dp[ ...
随机推荐
- 实践作业4:Web测试实践(小组作业)每日任务记录2
实践作业4:Web测试实践(小组作业)每日任务记录2 会议时间:2017年12月22日 会议地点:东九教学楼自习区 主 持 人:王晨懿 参会人员:王晨懿.余晨晨.郑锦波.杨潇.侯欢.汪元 记 录 ...
- CodeForces 690C1 Brain Network (easy) (水题,判断树)
题意:给定 n 条边,判断是不是树. 析:水题,判断是不是树,首先是有没有环,这个可以用并查集来判断,然后就是边数等于顶点数减1. 代码如下: #include <bits/stdc++.h&g ...
- Hadoop(分布式系统基础架构)---Hive与HBase区别
对于刚接触大数据的用户来说,要想区分Hive与HBase是有一定难度的.本文将尝试从其各自的定义.特点.限制.应用场景等角度来进行分析,以作抛砖引玉之用. Hive是什么? Apache Hive是 ...
- 说说JVM中的操作码
JVM操作码 加载与存储操作码 load --从局部变量加载值到栈上 ldc --从池中加载常量到栈上 store --把值从栈中移走,存到局部变量中 dup --复制栈顶的值 getField -- ...
- 设计模式22:Strategy 策略模式(行为型模式)
Strategy 策略模式(行为型模式) 动机(Motivation) 在软件构建过程中,某些对象使用的算法可能多种多样,经常改变,如果将这些算法都编码到对象中,将会使对象变得异常复杂:而且有时候支持 ...
- recv函数的用法详解
recv函数 int recv( SOCKET s, char FAR *buf, int len, int flags ); 不论是客户还是服务器应用程序都用rec ...
- 已经导入到VS工具箱中的DevExpress如何使用
1.下载安装DevExpress控件(如DXperienceUniversal-11.1.12.exe),安装后路径:“C:\Program Files (x86)\DevExpress 2011.1 ...
- Java中的Type
Type是Java 编程语言中所有类型的公共高级接口(官方解释),也就是Java中所有类型的“爹”:其中,“所有类型”的描述尤为值得关注.它并不是我们平常工作中经常使用的 int.String.Lis ...
- Logstash 算术运算操作
需求:input为json,output为ES,需使用filter提取json中的某个字段,并执行加法.加法.乘法等算法操作 思路:mutate过滤器+ruby过滤器实现 避坑:根据ES及Logsta ...
- 浅谈HTTPS以及Fiddler抓取HTTPS协议(摘抄)
一.浅谈HTTPS 我们都知道HTTP并非是安全传输,在HTTPS基础上使用SSL协议进行加密构成的HTTPS协议是相对安全的.目前越来越多的企业选择使用HTTPS协议与用户进行通信,如百度.谷歌等. ...