POJ1733 Parity game


Description

Now and then you play the following game with your friend. Your friend writes down a sequence consisting of zeroes and ones. You choose a continuous subsequence (for example the subsequence from the third to the fifth digit inclusively) and ask him, whether this subsequence contains even or odd number of ones. Your friend answers your question and you can ask him about another subsequence and so on. Your task is to guess the entire sequence of numbers.

You suspect some of your friend’s answers may not be correct and you want to convict him of falsehood. Thus you have decided to write a program to help you in this matter. The program will receive a series of your questions together with the answers you have received from your friend. The aim of this program is to find the first answer which is provably wrong, i.e. that there exists a sequence satisfying answers to all the previous questions, but no such sequence satisfies this answer.

Input

The first line of input contains one number, which is the length of the sequence of zeroes and ones. This length is less or equal to 1000000000. In the second line, there is one positive integer which is the number of questions asked and answers to them. The number of questions and answers is less or equal to 5000. The remaining lines specify questions and answers. Each line contains one question and the answer to this question: two integers (the position of the first and last digit in the chosen subsequence) and one word which is either even or odd (the answer, i.e. the parity of the number of ones in the chosen subsequence, where even means an even number of ones and odd means an odd number).

Output

There is only one line in output containing one integer X. Number X says that there exists a sequence of zeroes and ones satisfying first X parity conditions, but there exists none satisfying X+1 conditions. If there exists a sequence of zeroes and ones satisfying all the given conditions, then number X should be the number of all the questions asked.

Sample Input

10

5

1 2 even

3 4 odd

5 6 even

1 6 even

7 10 odd

Sample Output

3


题意:

告诉你有一个长度为L的01串

然后告诉你n个询问和结果

询问一个区间中的1的个数是计数还是偶数

然后给出答案

问你前多少个答案是合法的


这题我有另一个做法的题解啊,在这里

然后这个做法好像是啥扩展域并查集

意思就是说我们把每个点的前缀奇和前缀偶分成两个点,然后每次我们可以发现一些点之间的等价关系(连边),只需要判断:

1." role="presentation" style="position: relative;">1.1.是不是当前命题不成立

2." role="presentation" style="position: relative;">2.2.是不是有一个点的奇数和偶数是等价的(连上边),然后并查集维护


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=10000;
#define OD(t) t
#define EV(t) t+MAXN
const int N=10010;
int fa[N<<1],pre[N<<1];
int l[N],r[N];bool typ[N];
int n,m,tot=0;
char c[10];
int find(int x){
if(x==fa[x])return x;
return fa[x]=find(fa[x]);
}
void merge(int x,int y){fa[find(x)]=find(y);}
int main(){
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++){
scanf("%d%d%s",&l[i],&r[i],c);
pre[++tot]=--l[i];
pre[++tot]=r[i];
if(c[0]=='e')typ[i]=0;
else typ[i]=1;
}
sort(pre+1,pre+tot+1);
tot=unique(pre+1,pre+tot+1)-pre-1;
for(int i=1;i<N*2;i++)fa[i]=i;
for(int i=1;i<=n;i++){
l[i]=lower_bound(pre+1,pre+tot+1,l[i])-pre;
r[i]=lower_bound(pre+1,pre+tot+1,r[i])-pre;
}
for(int i=1;i<=n;i++){
if(typ[i]){
if(find(OD(l[i]))==find(OD(r[i]))){printf("%d",i-1);return 0;}
if(find(EV(l[i]))==find(EV(r[i]))){printf("%d",i-1);return 0;}
merge(OD(l[i]),EV(r[i]));
merge(EV(l[i]),OD(r[i]));
}else{
if(find(OD(l[i]))==find(EV(r[i]))){printf("%d",i-1);return 0;}
if(find(EV(l[i]))==find(OD(r[i]))){printf("%d",i-1);return 0;}
merge(OD(l[i]),OD(r[i]));
merge(EV(l[i]),EV(r[i]));
}
}
printf("%d",n);
return 0;
}

POJ1733 Parity game 【扩展域并查集】*的更多相关文章

  1. poj1733 Parity Game(扩展域并查集)

    描述 Now and then you play the following game with your friend. Your friend writes down a sequence con ...

  2. POJ1733 Parity game —— 种类并查集

    题目链接:http://poj.org/problem?id=1733 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. [POJ1733]Parity game(并查集 + 离散化)

    传送门 题意:有一个长度已知的01串,给出[l,r]这个区间中的1是奇数个还是偶数个,给出一系列语句问前几个是正确的 思路:如果我们知道[1,2][3,4][5,6]区间的信息,我们可以求出[1,6] ...

  4. POJ1733 Party game [带权并查集or扩展域并查集]

    题目传送 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10870   Accepted: 4182 ...

  5. NOI2001 食物链【扩展域并查集】*

    NOI2001 食物链 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的 ...

  6. POJ2912 Rochambeau [扩展域并查集]

    题目传送门 Rochambeau Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4463   Accepted: 1545 ...

  7. P1525 关押罪犯[扩展域并查集]

    题目来源:洛谷 题目描述 S城现有两座监狱,一共关押着N名罪犯,编号分别为1−N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整 ...

  8. AcWing:240. 食物链(扩展域并查集 or 带边权并查集)

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形. A吃B, B吃C,C吃A. 现有N个动物,以1-N编号. 每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用 ...

  9. AcWing:239. 奇偶游戏(前缀和 + 离散化 + 带权并查集 + 异或性质 or 扩展域并查集 + 离散化)

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

随机推荐

  1. 51nod 1187 寻找分数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  2. Win10配Theano环境和Keras框架

    网络上有各种各样的win7 64bit安装theano的方法,我也试过好多,各种各样的问题.因为之前没了解过MinGw等东西,所以安装起来比较费劲,经过不断的尝试,最终我按照以下过程安装成功. 其实过 ...

  3. 通用Mapper相关

    1.通用Mapper中,用@Table来映数据表与实体,其中 name:指定表的名称,例如@Table(name="ls_post") catalog: 指定数据库名称,默认为当前 ...

  4. LeetCode 380. Insert Delete GetRandom O(1)

    380. Insert Delete GetRandom O(1) Add to List Description Submission Solutions Total Accepted: 21771 ...

  5. 重新学习MySQL数据库7:详解MyIsam与InnoDB引擎的锁实现

    重新学习Mysql数据库7:详解MyIsam与InnoDB引擎的锁实现 说到锁机制之前,先来看看Mysql的存储引擎,毕竟不同的引擎的锁机制也随着不同. 三类常见引擎: MyIsam :不支持事务,不 ...

  6. p-value值的认识

    待续:https://www.zhihu.com/question/21429785/answer/147047565

  7. spoj-SAMER08A-最短路

    SAMER08A - Almost Shortest Path #graph-theory #shortest-path #dijkstra-s-algorithm Finding the short ...

  8. linux命令生成公私钥

    生成原始rsa私钥文件: openssl genrsa -out rsa_private_key.pem 1024 将原始的rsa私钥转换未pkcs8格式(即生成私钥文件): openssl pkcs ...

  9. 发送垃圾邮件的僵尸网络——药物(多)、赌博、股票债券等广告+钓鱼邮件、恶意下载链接、勒索软件+推广加密货币、垃圾股票、色情网站(带宏的office文件、pdf等附件)

    卡巴斯基实验室<2017年Q2垃圾邮件与网络钓鱼分析报告> 米雪儿 2017-09-07 from:http://www.freebuf.com/articles/network/1465 ...

  10. Mit-Scheme 安装小记

    Win10 到 http://www.gnu.org/software/mit-scheme/ 下载对应平台的安装包,我下载的是windows 版本 安装到本地后只出现一个快捷方式MIT-GNU Sc ...