BZOJ2820 YY的GCD


Description

神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入

Input

第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000
N, M <= 10000000



//yangkai
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int N=1e7+10;
int T,n,m,tot=0;
bool mark[N];
int pri[N],mu[N];
LL F[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<N;j++){
mark[i*pri[j]]=1;
if(!(i%pri[j])){//已经存在过pri[j],出现平方因子
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
//预处理F数组
for(int i=1;i<N;i++)
for(int j=1;j<=tot&&i*pri[j]<N;j++)
F[i*pri[j]]+=mu[i];
for(int i=1;i<N;i++)F[i]+=F[i-1];
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int up=min(n,m);
LL ans=0;
//下底函数分块计算
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(F[j]-F[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return 0;
}

BZOJ2820 YY的GCD 【莫比乌斯反演】的更多相关文章

  1. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  4. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  5. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  6. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  7. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  8. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  9. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  10. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. 外国人专门写了一篇文章,来分析为什么go在中国如此火

    外国人专门写了一篇文章,来分析为什么go在中国如此火: <Why is Golang popular in China?> http://herman.asia/why-is-go-pop ...

  2. R中去除为NA的行--转载

    下面用实例来说明这两个函数的作用: 这是一个数据框final: gene hsap mmul mmus rnor cfam 1 ENSG00000208234 0 NA NA NA NA 2 ENSG ...

  3. BinLog日志

    一.概述 binlog 二进制日志文件,可以说是MySQL最重要的日志了,它记录了所有的DDL和DML(除了数据查询语句)语句,以事件形式记录,还包含语句所执行的消耗的时间,MySQL的二进制日志是事 ...

  4. Uncaught SyntaxError: Unexpected end of input 突然报了这个错

    最后排查:把 return true 注掉好了,接着在打开注释,依然不报错.最后不报错了.0.0 ~~~

  5. 使用jquery.jqprint.js 实现的打印功能,IE9不能进行打印预览、火狐打印空白界面

    提示的内容:SCRIPT438: 对象不支持“ExecWB”属性或方法 首先解决IE9不能打印预览的问题: 查找了一大推资料 ,有两种说法:一种是IE的安全性级别太高:一种是需要安装什么   微软we ...

  6. ResultSet 结果集

    转自:http://blog.csdn.net/z93971401/article/details/7469503 这篇文章并没有给出如何使用ResultSet的具体例子,只是从ResultSet的功 ...

  7. js中常用的字符串方法

    1,基础方法 charAt();返回该位置的字符,类似数组下标: substring();返回选中的字符,两个参数是下标. slice();参数是是一个正数,返回该数之后的剩余字符串:参数是负数,返回 ...

  8. Ansible 开发调试 之【pycharm远程调试】

    介绍 PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试.语法高亮.Project管理.代码跳转.智能提示.自动完成.单元测试.版本 ...

  9. ansible入门一(Ansible介绍及安装部署)

    本节内容: 运维工具 Ansible特性 Ansible架构图和核心组件 安装Ansible 演示使用示例 一.运维工具 作为一个Linux运维人员,需要了解大量的运维工具,并熟知这些工具的差异,能够 ...

  10. HDU 2669 Romantic (扩展欧几里得定理)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...