Grids

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 953    Accepted Submission(s): 418

Problem Description
  度度熊最近很喜欢玩游戏。这一天他在纸上画了一个2行N列的长方形格子。他想把1到2N这些数依次放进去,但是为了使格子看起来优美,他想找到使每行每列都递增的方案。不过画了很久,他发现方案数实在是太多了。度度熊想知道,有多少种放数字的方法能满足上面的条件?
 
Input
  第一行为数据组数T(1<=T<=100000)。
  然后T行,每行为一个数N(1<=N<=1000000)表示长方形的大小。
 
Output
  对于每组数据,输出符合题意的方案数。由于数字可能非常大,你只需要把最后的结果对1000000007取模即可。
 
Sample Input
2
1
3
 
Sample Output
Case #1:
1
Case #2:
5

Hint

对于第二组样例,共5种方案,具体方案为:

 
Source
 暴力找出前几项可知  1,2,5,14,42、、、容易看出是卡特兰数,递推公式   f(n+1)=(4*n-6)/n*f(n)  |  f(1)=f(2)=1   n>=2;
由于数很大需要取模用到了逆元,这里上界100w所以用了打表法,唯一要注意的一点就是,在处理4-6/n时,由于减法可能出现负数
我们写成 ( 4-6*inv[n]+mod )的形式但是这样还是会出现负数,因为6*inv[n]可能大于mod,这里只要多加几个mod即可解决
 #include<bits/stdc++.h>
using namespace std;
#define LL long long
const LL mod=1e9+;
LL inv[]={,};
LL cat[]={,,};
void init()
{
for(int i=;i<=;++i)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=;++i)
cat[i]=cat[i-]*((+*mod-*inv[i-])%mod)%mod;
}
int main()
{
int t,k=,i,n;
scanf("%d",&t);
init();
for(i=;i<=t;++i){
scanf("%d",&n);
printf("Case #%d:\n%lld\n",i,cat[n+]);
}
return ;
}

HDU 4828 逆元+catalan数的更多相关文章

  1. HDU 4828 - Grids (Catalan数)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n ...

  2. hdu 4828 Grids 卡特兰数+逆元

    Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Problem D ...

  3. HDU 1023 Catalan数+高精度

    链接:HDU 1023 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:5 ...

  4. HDU 4828 (卡特兰数+逆元)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...

  5. HDU 4828 (卡特兰数+逆)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...

  6. hdu 4828 Grids(拓展欧几里得+卡特兰数)

    题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...

  7. HNU 12933 Random Walks Catalan数 阶乘求逆元新技能

    一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法. 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推 ...

  8. hdu 1130 How Many Trees?(Catalan数)

    How Many Trees? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. HDU 1023 Train Problem II 大数打表Catalan数

    一个出栈有多少种顺序的问题.一般都知道是Catalan数了. 问题是这个Catalan数非常大,故此须要使用高精度计算. 并且打表会速度快非常多.打表公式要熟记: Catalan数公式 Cn=C(2n ...

随机推荐

  1. [CentOS] 常用工具软件包

    gcc & g++ & gdb • 安装方法 yum install gcc -y yum install gcc-c++ -y         yum install gdb -y ...

  2. STL make_heap push_heap pop_heap sort_heap

    make_heap: default (1) template <class RandomAccessIterator> void make_heap (RandomAccessItera ...

  3. 转:在0~N(不包括N)范围内随机生成一个长度为M(M <= N)且内容不重复的数组

    1. 最朴素暴力的做法. void cal1() { , j = , num = ; int result[M]; result[] = rand() % N; //第一个肯定不重复, 直接加进去 ; ...

  4. [转]VMware-Transport(VMDB) error -44:Message.The VMware Authorization Service is not running解决方案

    转自:http://blog.sina.com.cn/s/blog_70c9c4b40101i01v.html 1.VMware Workstation中新建的虚拟机在开机的时候出现这种错误:Tran ...

  5. 这几天添加ccbi 出现的问题

    父类是一个ccbi...在父类的onNodeLoaded 里面添加子类的ccbi ... 出现了父类为空的情况...获取不到时间轴..动画为空... 需要在父类的onEnter里面写添加子类的ccbi ...

  6. Django----Request对象&Response对象

    Django 使用Request 对象和Response 对象在系统间传递状态. HttpRequest 对象: Request.body:一个字节字符串,表示原始HTTP 请求的正文.它对于处理非H ...

  7. KVM网络性能调优

    首先,我给大家看一张图,这张图是数据包从虚拟机开始然后最后到物理网卡的过程. 我们分析下这张图,虚拟机有数据包肯定是先走虚拟机自身的那张虚拟网卡,然后发到中间的虚拟化层,再然后是传到宿主机里的内核网桥 ...

  8. C++类中成员变量的初始化总结(转帖)

    本文转自:C++类中成员变量的初始化总结 1. 普通的变量:      一般不考虑啥效率的情况下 可以在构造函数中进行赋值.考虑一下效率的可以再构造函数的初始化列表中进行.  1 class CA  ...

  9. web.xml listener配置

    listener简介: <listener>能为web应用创建监视器,监听上下文的各种事件,如:application和session事件,这些监视器都是按相同的方式定义,它的功能取决于各 ...

  10. git失败案例

    哈哈哈,git终于能push了,哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈 我怀疑是系统版本的问题,之前一直不没能pu ...