4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 1616  Solved: 985
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000

Output

输出 T 行,每行一个数,表示求出的序列数

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423

HINT

Source

[Submit][Status][Discuss]

没有任何难度的组合数水题,只要知道错排公式即可。注意$f_1=1$

$$ans=C_n^m*f_{n-m} \quad f_n=(n-1)(f_{n-1}+f_{n-2})$$

快速幂竟然会写错?

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (ll i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const ll N=,mod=;
ll n,m,T,fin[N+],fac[N+],f[N+]; ll pow(ll a,ll b){
ll res;
for (res=; b; a=(a*a)%mod,b>>=)
if (b & ) res=(res*a)%mod;
return res;
} int main(){
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
fac[]=; rep(i,,N) fac[i]=(fac[i-]*i)%mod;
fin[N]=pow(fac[N],mod-);
for (ll i=N-; ~i; i--) fin[i]=(fin[i+]*(i+))%mod;
f[]=; f[]=; f[]=; rep(i,,N) f[i]=((i-)*(f[i-]+f[i-]))%mod;
for (scanf("%lld",&T); T--; )
scanf("%lld%lld",&n,&m),printf("%lld\n",((fac[n]*fin[m]%mod*fin[n-m])%mod*f[n-m])%mod);
return ;
}

[BZOJ4517][SDOI2016]排列计数(错位排列)的更多相关文章

  1. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  2. 【BZOJ4517】排列计数(排列组合)

    题意:1-n的一个序列,其中有m个a[i]=i,求方案数 n,m<=1000000 题意:显然ANS=c(n,m)*d[n-m] d[i]为错排方案数=d[i-1]*n+(-1)^n ; ..] ...

  3. 【数论·错位排列】bzoj4517 排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1428  Solved: 872[Submit][Statu ...

  4. 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

    [BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...

  5. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  6. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  7. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  8. 【BZOJ4517】【SDOI2016】排列计数 [数论]

    排列计数 Time Limit: 60 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 求有多少种长度为 n 的序列 A, ...

  9. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

随机推荐

  1. 详细说说如何生成验证码—ASP.NET细枝末节(4)

    前言 今天小编详细的说一下,ASP.NET网站开发过程中生成验证码的全部问题. 本文的目标,是让读者了解,生成验证码涉及的全部基础知识问题. 当然这里说的是比较简单的验证码. 真正符合要求的验证码,涉 ...

  2. js关闭当前页面跳转新页面

    页面代码: <p class="info"><span style="font-weight: bold">所属项目:</span ...

  3. Java读取大文件的高效率实现

    1.概述 本教程将演示如何用Java高效地读取大文件.这篇文章是Baeldung (http://www.baeldung.com/) 上“Java——回归基础”系列教程的一部分. 2.在内存中读取 ...

  4. 我的Mac使用笔记

    此篇记录mac使用相关的一些东西,不断更新中... 1.Mac 安装homebrew : https://brew.sh/index_zh-cn.html /usr/bin/ruby -e " ...

  5. 常用的css3新特性总结

    1:CSS3阴影 box-shadow的使用和技巧总结: 基本语法是{box-shadow:[inset] x-offset y-offset blur-radius spread-radiuscol ...

  6. python基础之上下文管理器

    前言 关于计算器运行的上下文的概念,我的理解也不是很深:按我的理解就是程序在运行之前,其所需要的资源,运行环境等都会被序列化,然后加入到CPU的任务队列中,等待调度系统分配时间片执行.下面谈谈pyth ...

  7. NoSQL-来自维基百科

    NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称. 两者存在许多显著的不同点,其中最重要的是NoSQL不使用SQL作为查询语言.其数据存储可以不需 ...

  8. 【SSH项目实战】脚本密钥的批量分发与执行【转】

    [TOC] 前言 <项目实战>系列为<linux实战教学笔记>第二阶段内容的同步教学配套实战练习,每个项目循序衔接最终将组成<Linux实战教学笔记>第二阶段核心教 ...

  9. linux系统查找具体进程

    ps -ef | grep '查找内容' eg:ps -ef | grep '测试USB设备穿透'

  10. Hashtable之Properties

    properties的使用:1.Hashtable的实现类,线程安全.与HashMap不同,Hashtable不允许使用null作为key和value2.和HashMap一样,Hashtable也不能 ...