首先考虑$prufer$序列,那么问题转化为求

一个长为$n - 2$的序列,总共有$n$个元素,恰有$m$个元素不出现在序列中的方案数

考虑容斥,答案即为 至少$m$个元素不出现 - 至少$m + 1$个不出现 + 至少$m + 2$个不出现......

至少$m$个元素不出现的方案数为$C(n, m) * (n - i)^{n - 2}$

接着考虑容斥系数,通过数学归纳法,我们发现是$C(i, m)$

然后就没了,复杂度$O(n \log n)$

注:$n = 1$或者$n = 2$时,树没有$prufer$序列,记得特判

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define ri register int
#define sid 1005000
#define mod 1000000007 int n, m, ans;
int inv[sid], fac[sid]; void Init_C() {
fac[] = inv[] = fac[] = inv[] = ;
for(ri i = ; i <= n; i ++) {
inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
fac[i] = 1ll * fac[i - ] * i % mod;
}
for(ri i = ; i <= n; i ++)
inv[i] = 1ll * inv[i] * inv[i - ] % mod;
} int C(int n, int m) {
if(n < m) return ;
return 1ll * fac[n] * inv[m] % mod * inv[n - m] % mod;
} int fp(int a, int k) {
int ret = ;
for( ; k; k >>= , a = 1ll * a * a % mod)
if(k & ) ret = 1ll * ret * a % mod;
return ret;
} int main() { cin >> n >> m;
if(n == || n == )
{ printf("1\n"); return ; } Init_C();
for(ri i = m, j = ; i <= n; i ++, j *= -) {
ans += (1ll * j * C(i, m) * C(n, i) % mod * fp(n - i, n - ) % mod);
if(ans < ) ans += mod; if(ans >= mod) ans -= mod;
} printf("%d\n", ans);
return ;
}

51nod1805 小树 prufer序列 + 容斥原理的更多相关文章

  1. 【专题】计数问题(排列组合,容斥原理,Prufer序列)

    [容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...

  2. bzoj 1005 1211 prufer序列总结

    两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...

  3. bzoj1211: prufer序列 | [HNOI2004]树的计数

    题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...

  4. [BZOJ1211][HNOI2004]树的计数(Prufer序列)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...

  5. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  6. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  7. prufer序列笔记

    prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定 ...

  8. BZOJ1430小猴打架——prufer序列

    题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...

  9. 【XSY2519】神经元 prufer序列 DP

    题目描述 有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制.问你有多少种方案. \( ...

随机推荐

  1. LintCode 391: Count Of Airplanes

    LintCode 391: Count Of Airplanes 题目描述 给出飞机的起飞和降落时间的列表,用 interval 序列表示. 请计算出天上同时最多有多少架飞机? 样例 对于每架飞机的起 ...

  2. 铺地砖|状压DP练习

    有一个N*M(N<=5,M<=1000)的棋盘,现在有1*2及2*1的小木块无数个,要盖满整个棋盘,有多少种方式?答案只需要mod1,000,000,007即可. //我也不知道这道题的来 ...

  3. 64_s3

    sugar-toolkit-gtk3-devel-0.110.0-2.fc26.i686.rpm 13-Feb-2017 10:56 22626 sugar-toolkit-gtk3-devel-0. ...

  4. centos如何设置定时任务

    1.crontab -e 打开任务列表,输入i开始编写面之后按esc退出编写默写,:wq保存退出即可. 2.关于时间格式的定义,,请使用下面的网站 https://crontab.guru/#00_0 ...

  5. 图解IIS8上解决ASP.Net第一次访问慢的处理

  6. 统计学习方法三:K近邻

    一.什么是K近邻? K近邻是一种基本的分类和回归方法. 在分类时,对新的实例,根据其K个最近邻的训练实例的类别,通过多数表决权等方式预测其类别. 通俗的讲,找K个和其关系最近的邻居,哪个类别的邻居多, ...

  7. java中常见异常汇总(根据自己遇到的异常不定时更新)

    1.java.lang.ArrayIndexOutOfBoundsException:N(数组索引越界异常.如果访问数组元素时指定的索引值小于0,或者大于等于数组的长度,编译程序不会出现任何错误,但运 ...

  8. C语言花括号

    由于C语言本身就是函数式语言,说白了,C程序就是由函数构成的! 所以花括号肯定是用在函数之中,包括函数中的各种流程控制语句中. 实际上,C程序中花括号{}的作用:就是把多个单条语句用花括号{}括起来组 ...

  9. UFLDL 教程学习笔记(六)主成分分析

    教程:http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 以及这篇博文,写的很清楚:http://blog. ...

  10. [Ext JS 4]后台自动产生图档

    前言 [Ext JS 4] 实战之将chart导出为png, jpg 格式的文件 承接上一篇, 我们可以做到在Browser端打开一个Chart,并导出为png或是jpg 等格式的图档. 但实际的需求 ...