5.2自然语言处理

觉得有用的话,欢迎一起讨论相互学习~Follow Me

2.7 负采样 Negative sampling

Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// International Conference on Neural Information Processing Systems. Curran Associates Inc. 2013:3111-3119.

  • skip-gram模型可以构造一个监督学习任务,把上下文映射到目标词上,以学习一个实用的词嵌入,但是他的缺点是softmax计算起来很慢。本节将会介绍了一个经过优化的学习问题叫做 负采样,其能够做到和 skip-gram 相似的功能但是使用起来更加高效。

样本生成方法

  • 例句: I want a glass of orange juice to go along with my cereal 构造一个新的监督学习问题,给定一对单词 orange 和 juice ,预测这是否是一对 上下文词-目标词 (context-target) ,在这个样本中,orange 和 juice 就是一个正样本。 然而对于 orange 和 king 就是一个负样本。

    • 正样本 的生成是采样得到一个上下文词和一个目标词。其中先在句中随机均匀的选取一个单词作为上下文词。然后在其左右两边一定词距内随机选择一个单词作为目标词。 并且将 标签 设置为1.
    • 负样本 的生成是使用和正样本一样的上下文词,然后从字典中随机选取一个单词构成一个组合。并且将 标签 设置为0. 其中同一 上下文词 生成 K个 负样本
context word target
orange juice 1
orange king 0
orange book 0
orange the 0
orange of 0
  • 注意:正负样本 的区别仅取决于单词对的来源,即是 of 也在 orange 的设定词距之内,但是作为随机从字典中选取的单词, of - orange 单词对仍然被标记为负样本。
  • 在本次提出的算法中 输入数据x 将被设定为 context-word 的单词对,预测结果y 将被设置为 target 算法的目的即是区分 样本采样的来源
  • 论文作者推荐,小数据集的话 K 被设置为5-20, 而对于较大的数据集, K 被设置为2-5.即数据集越小 K 值被设定的越大。

模型学习原理

  • Skip-grams 中softmax函数定义:
    \[P(target|content)=\frac{e^{\theta_{t}^{T}e_{c}}}{\sum^{10000}_{j=1}{e^{\theta^{T}_{j}e_{c}}}}\]

  • 本节算法定义 输入Context为c,Word为t,定义输出Target为y

context word target
c t y
\(x_1\) \(x_2\) y
orange juice 1
orange king 0
orange book 0
orange the 0
orange of 0
  • 损失函数 定义为给定 样本单词对 的情况下,\(y=1\) 的概率:

    • 使用\(e_{c}\)表示context的词嵌入向量 其中\(\theta_{t}\)表示每个样本对应的参数.
    • \[P(y=1|c,t)=\sigma(\theta^{T}_{t}e_{c})\]
    • 对于每个正样本都有 K 个负样本来训练一个类似logisitic回归的模型。

神经网络算法流程

  1. 如果输入词是 orange ,即词典中的第6257个词,将其使用one-hot向量表示 \(o_{6257}\),
  2. 再传递给E(词嵌入向量矩阵),通过两者相乘得到 orange 的嵌入向量 \(e_{6357}\)
  3. \(e_{6357}\)是一个1W维(字典中总单词数量)的向量,可以看成是1W个可能的logistic回归分类问题,其中一个是用来判断目标词是否是 juice 的分类器,当然也有用来判断 king,book,the... 等词汇是否是目标词的分类器。但是每次迭代不都是训练所有的样本, 每次迭代只会训练一个正样本和随机选取的 K 个负样本
  • 此算法将需要计算10000个维度的softmax问题转化为10000个二分类问题,每一个都易于计算,每次迭代要做的只是训练其中的 K+1 个样本,其中一个正样本和随机选取的同一个Context的 K 个负样本。
  • 此算法被称为 负采样 , 因为在挑选一个 正样本 的同时,随机生成 K个负样本

负样本采样方法

  • 仅考虑单词在 语料库 中出现的频率,会导致负样本中 the, of, and ... 等介词出现的频率过高
  • 仅考虑单词在 词汇表 中出现的频率,即在 词汇表 中随机采样,分母是词汇表中的总词数,这样采样十分没有代表性。
  • 论文提出采样公式为:
    \[P(w_{i})=\frac{f(w_{i})^{3/4}}{\sum^{10000}_{j=1}f(w_{j})^{3/4}}\]其中\(f(w_{i})\)表示单词在语料库中的词频。

[DeeplearningAI笔记]序列模型2.7负采样Negative sampling的更多相关文章

  1. [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...

  2. [DeeplearningAI笔记]序列模型3.9-3.10语音辨识/CTC损失函数/触发字检测

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.9语音辨识 Speech recognition 问题描述 对于音频片段(audio clip)x ,y生成文本 ...

  3. [DeeplearningAI笔记]序列模型3.7-3.8注意力模型

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.7注意力模型直观理解Attention model intuition 长序列问题 The problem of ...

  4. [DeeplearningAI笔记]序列模型3.6Bleu得分/机器翻译得分指标

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6Bleu得分 在机器翻译中往往对应有多种翻译,而且同样好,此时怎样评估一个机器翻译系统是一个难题. 常见的解决 ...

  5. [DeeplearningAI笔记]序列模型3.3集束搜索

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.3 集束搜索Beam Search 对于机器翻译来说,给定输入的句子,会返回一个随机的英语翻译结果,但是你想要一 ...

  6. [DeeplearningAI笔记]序列模型3.2有条件的语言模型与贪心搜索的不可行性

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2选择最可能的句子 Picking the most likely sentence condition lan ...

  7. [DeeplearningAI笔记]序列模型3.1基本的 Seq2Seq /image to Seq

    5.3序列模型与注意力机制 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1基础模型 [1] Sutskever I, Vinyals O, Le Q V. Sequence to Se ...

  8. [DeeplearningAI笔记]序列模型2.8 GloVe词向量

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.8 GloVe word vectors GloVe词向量 Pennington J, Socher R, Mannin ...

  9. [DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN

    5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10长短期记忆网络(Long short term memory)LSTM Hochreiter S, Schmidhu ...

随机推荐

  1. python3【基础】-装饰器

    要理解充分理解python的装饰器,有充分理解下述三个知识点为前提: python作用域规则 函数即对象 闭包 一.python作用域规则: 首先介绍python中的作用域规则.python的作用域规 ...

  2. ES6的新特性(14)——Iterator 和 for...of 循环

    Iterator 和 for...of 循环 Iterator(遍历器)的概念 JavaScript 原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6 又添加了Ma ...

  3. ES6的新特性(10)——Class 的基本语法

    Class 的基本语法 简介 JavaScript 语言中,生成实例对象的传统方法是通过构造函数.下面是一个例子. function Point(x, y) { this.x = x; this.y ...

  4. ecshop以及一些需要注意的

    Deprecated: Assigning the return value of new by reference is deprecated in 定位到出错的那一行: $this->_ol ...

  5. B. Counting-out Rhyme(约瑟夫环)

    Description n children are standing in a circle and playing the counting-out game. Children are numb ...

  6. 王者荣耀交流协会第三次Scrum立会

    会议时间:2017年10月22号   18:00-18:32,时长32分钟. 会议地点:中快餐厅二楼第二排倒数第二个桌子. 立会内容: 1.每位同学汇报了今日工作. 2.通过讨论我们决定用存excel ...

  7. lintcode-433-岛屿的个数

    433-岛屿的个数 给一个01矩阵,求不同的岛屿的个数. 0代表海,1代表岛,如果两个1相邻,那么这两个1属于同一个岛.我们只考虑上下左右为相邻. 样例 在矩阵: [ [1, 1, 0, 0, 0], ...

  8. 第八章 Mysql运算符

    算术运算符 符号 表达式形式 作用 + x1+x2 加法 - x1-x2 减法 * x1*x2 乘法 / x1/x2 除法 div x1 div x2 同上 % x1%x2 取余 mod mod(x1 ...

  9. 【week12】psp

    psp 项目 内容 开始时间 结束时间 被打断 净时间 12月2日 写博客 对各小组评价 11:20 12:05 0 45 写博客 final评价1 23:40 23:57 0 17 12月5日 看论 ...

  10. PAT 甲级 1081 Rational Sum (数据不严谨 点名批评)

    https://pintia.cn/problem-sets/994805342720868352/problems/994805386161274880 Given N rational numbe ...