HDU 1299 基础数论 分解
给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + n$,也就是求n^2的因子数量
/** @Date : 2017-09-08 10:45:12
* @FileName: HDU 1299 数论 分解.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int pri[N];
int vis[N];
int c = 0;
void prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i])
vis[i] = 1, pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i*pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} int main()
{
prime();
int T;
cin >> T;
int icase = 0;
while(T--)
{
LL n;
scanf("%lld", &n);
LL t = n * n;//直接对n^2分解不对?
LL cnt = 1;
for(int i = 0; i < c && pri[i] * pri[i] <= n; i++)
{
if(n % pri[i] == 0)
{
LL tmp = 0;
while(n % pri[i] == 0 && n)
n /= pri[i], tmp++;
cnt *= tmp*2+1;
}
}
if(n > 1)
cnt *= 3;
cnt = (cnt + 1) / 2;
printf("Scenario #%d:\n", ++icase);
printf("%lld\n\n", cnt);
}
return 0;
}
HDU 1299 基础数论 分解的更多相关文章
- HDU 1333 基础数论 暴力
定义一种数位simth数,该数的各位之和等于其所有质因子所有位数字之和,现给出n求大于n的最小该种数,n最大不超过8位,那么直接暴力就可以了. /** @Date : 2017-09-08 14:12 ...
- hdu 1299 Diophantus of Alexandria(数学题)
题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...
- HDU 2509 基础Anti-SG NIM
如果我们规定当局面中所有的单一游戏的SG值为0时,游戏结束,则先手必胜当且仅当:(1)游戏的SG!=0 && 存在单一游戏的SG>1:(2)游戏的SG==0 && ...
- HDU 3537 基础翻硬币模型 Mock Turtles 向NIM转化
翻硬币游戏,任意选3个,最右边的一个必须是正面.不能操作者败. 基本模型..不太可能自己推 还是老实记下来吧..对于单个硬币的SG值为2x或2x+1,当该硬币的位置x,其二进制1的个数为偶数时,sg= ...
- HDU 2188 基础bash博弈
基础的bash博弈,两人捐钱,每次不超过m,谁先捐到n谁胜. 对于一个初始值n,如果其不为(m+1)的倍数,那么先手把余数拿掉,后继游戏中不管如何,后手操作后必定会有数余下,那么先手必胜,反之后手必胜 ...
- HDU 2176 基础NIM 输出方案
普通的NIM,然后问先手必胜第一次操作后的所有局面. 对于一个必胜局面只要转变局面SG值为必败(SG=0)留给后手就行了. /** @Date : 2017-10-13 21:39:13 * @Fil ...
- LightOJ1214 Large Division 基础数论+同余定理
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- HDU-1576 A/B 基础数论+解题报告
HDU-1576 A/B 基础数论+解题报告 题意 求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973) (我们给定的A必能被B整除,且gcd(B,9973) = 1). 输入 数据 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
随机推荐
- 四则运算2+psp0
程序要求: 1.题目避免重复 2.可定制(数量\打印方式) 3.可以一下控制参数 ① 是否有乘除法 ② 是否有括号(最多支持十个数参与运算) ③ 数值范围 ④加减有无负数 ⑤除法有无余数 分析:① 如 ...
- Linux系统中增加swap空间大小
在我的树莓派pi3上编译dlib库时,发现由于内存不足导致编译失败.树莓派是1G内存,swap只有50M,因此将swap增加到500M,编译通过.具体设置方法如下: 使用free命令带上m参数,查看s ...
- Websphere Application Server 环境配置与应用部署最佳实践
在发布一个运行于 WebSphere Application Server 的 J2EE 应用之前,对服务器进行配置和部署应用是必不可少的一个过程,这个过程是非常复杂的.WAS 为用户提供了可视化的管 ...
- jdbc 4.0
1.存储MySQL数据库的date.time.timestamp.datetime以及year类型数据 package com.rong.jielong; import java.sql.Connec ...
- Java List部分截取,获得指定长度子集合
subList方法用于获取列表中指定范围的子列表,该列表支持原列表所支持的所有可选操作.返回列表中指定范围的子列表. 语法 subList(int fromIndex, int toIndex) fr ...
- ASP.NET 页面访问控制
request常用对象和方法: @属性:1.quary string,获取通过URL路径传来的数据 2.Form,获取通过表单提交传输的数据 3.servervariables,获取Web服务器变量的 ...
- webgl 初识1
1. webgl是什么? WebGL其实是一个非常简单的API.好吧,“简单”可能是一个不恰当的描述. 它做的是一件简单的事,它仅仅运行用户提供的两个方法,一个顶点着色器和一个片断着色器, 去绘 ...
- [C/C++] 指针数组和数组指针
转自:http://www.cnblogs.com/Romi/archive/2012/01/10/2317898.html 这两个名字不同当然所代表的意思也就不同.我刚开始看到这就吓到了,主要是中文 ...
- Java知识点整理(一)
ArrayList和LinkedList的区别 1.ArrayList和LinkedList可想从名字分析,它们一个是Array(动态数组)的数据结构,一个是Link(链表)的数据结构,此外,它们两个 ...
- Kafka在大型应用中的 20 项最佳实践
原标题:Kafka如何做到1秒处理1500万条消息? Apache Kafka 是一款流行的分布式数据流平台,它已经广泛地被诸如 New Relic(数据智能平台).Uber.Square(移动支付公 ...