POJ - 2699 The Maximum Number of Strong Kings (最大流+枚举)
题意:有n(n<=10)个选手,两两之间打比赛,共有n*(n-1)/2场比赛,赢一场得1分。给出每个人最后的得分。求有多少个定义如下的strong king:赢了所有得分比自己高的人或本身就是分数最高的人。
更详细的说明:https://blog.csdn.net/sdj222555/article/details/7797257
分析:因为n很小,枚举人数是一种可行的做法,网络流求解。具体的建图方法是:
1.从源点向每个选手i建一条容量为val[i]的弧;
2.将每场比赛视作点,由每场比赛向汇点建一条容量为1的弧;
3.一对选手i和j之间,若val[i]<val[j]且i是 strong king,那么i向该场比赛的编号建一条容量为1的弧,表示i赢下了该场比赛。
跑出最大流f,若f等于比赛数,说明该情况下能得到正确比赛结果。
最暴力的方法是二进制枚举可能的strong king情况,复杂度能够接受。而链接博客中给出的做法却是十分精妙的枚举。
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN=1010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype int
struct SAP_MaxFlow{
struct EDGE{
int to,next;
captype cap;
}edg[MAXM];
int eid,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN];
void init(){
eid=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; head[u]=eid++;
edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to])
if(Min>edg[i].cap){
Min=edg[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].cap-=Min;
edg[i^1].cap+=Min;
}
ans+=Min;
u=edg[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
}F;
char str[1000];
int val[20];
int id[12][12];
int n,m,s,t;
bool vis[12][12];
void input()
{
n = 0;
int len = strlen(str);
int w=0;
for(int i=0;i<len;++i){
if(str[i]>='0' && str[i]<='9'){
w = w*10 + str[i]-'0';
if(i==len-1 || str[i+1]==' '){
val[++n] = w;
w = 0;
}
}
}
}
void build(int k)
{
F.init();
for(int i = 1; i <= n; i++) F.AddEdge(s, i, val[i]);
for(int i = n + 1; i <= m; i++) F.AddEdge(i, t, 1);
memset(vis, 0, sizeof(vis));
for(int i = n - k + 1; i <= n; i++)
for(int j = i + 1; j <= n; j++)
if(val[i] < val[j])
F.AddEdge(i, id[i][j], 1), vis[i][j] = 1;
for(int i = 1; i <= n; i++){
for(int j = i + 1; j <= n; j++){
if(!vis[i][j]){
F.AddEdge(i, id[i][j], 1);
F.AddEdge(j, id[i][j], 1);
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T; scanf("%d",&T);
getchar();
while(T--){
gets(str);
input();
m = n;
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
id[i][j] = id[j][i] = ++m;
}
}
int ans = 0;
s =0 ,t = m+1;
for(int i=n;i>=1;--i){
build(i);
if(F.maxFlow_sap(s,t,t+1)==n*(n-1)/2){
ans = i;
break;
}
}
printf("%d\n",ans);
}
return 0;
}
POJ - 2699 The Maximum Number of Strong Kings (最大流+枚举)的更多相关文章
- POJ 2699 The Maximum Number of Strong Kings Description
The Maximum Number of Strong Kings Description A tournament can be represented by a complete graph ...
- POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)
http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...
- poj 2699 The Maximum Number of Strong Kings 枚举 最大流
题目链接 题意 对于一个竞赛图(有向完全图),其顶点是选手,边是比赛,边\(e=(u,v)\)代表该场比赛中\(u\)战胜\(v\). 现定义选手的分数为其战胜的人的个数(即竞赛图中点的出度).并且定 ...
- poj 2699 The Maximum Number of Strong Kings【最大流+枚举】
因为n很小所以从大到小枚举答案.(从小到大先排个序,因为显然胜利场次越多越容易成为strong king.然后对于每个枚举出来的ans建图.点分别表示人和比赛.s向所有人连接流量为胜利场次的边,所有比 ...
- POJ 2699 The Maximum Number of Strong Kings ——网络流
一定存在一种最优方案,使得分数前几个人是SK 所以我们可以二分答案或者枚举,然后就是经典的网络流建模. 另:输入很Excited #include <cstdio> #include &l ...
- POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)
The Maximum Number of Strong Kings Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2488 ...
- POJ2699 The Maximum Number of Strong Kings
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2102 Accepted: 975 Description A tour ...
- 【POJ2699】The Maximum Number of Strong Kings(网络流)
Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...
- 【POJ】【2699】The Maximum Number of Strong Kings
网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...
随机推荐
- 【BZOJ3626】[LNOI2014]LCA 离线+树链剖分+线段树
[BZOJ3626][LNOI2014]LCA Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度 ...
- python裁剪base64编码的图片
简介 今天遇到需要裁剪base64字符串的PNG图片,并返回base64格式字符串的任务,捣鼓半天. 裁剪代码如下: def deal_inspect_img(base64_str): "& ...
- trust an HTTPS connection
https://zh.wikipedia.org/wiki/传输安全协议 SSL协议客户端要收发几个握手信号: 发送一个“ClientHello”消息,内容包括:支持的协议版本,比如TLS1.0版,一 ...
- ctf百度杯十二月场what_the_fuck(一口盐汽水提供的答案)
目录 漏洞利用原理 具体利用步骤 漏洞利用原理 read(, &s, 0x20uLL); if ( strstr(&s, "%p") || strstr(& ...
- 深入理解Flask中的上下文
https://blog.csdn.net/barrysj/article/details/51519254 1.AppContext类即是应用上下文,可以看到里面只保存了几个变量,其中比较重要的有: ...
- python基础-第二篇-基本数据类型
一.运算符 1.算数运算: 算数运算符相信大家都不陌生吧,尤其是加减乘除,好!那我就带着大家看看最后三个,这三个到底是干什么玩意的? %,取两数相除的余数,看图: **,x的多少次幂,看图: //,取 ...
- Error response from daemon: error creating overlay mount to /var/lib/docker/overlay2
环境:centos7.1 docker run -t -i centos /bin/bash 运行上面的命令开启容器时报错: /usr/bin/docker-current: Error respon ...
- chrome 因js死循环卡住
chrome因js死循环卡住的解决方法: top命令查看chrome的pid kill -9 pid 杀死整个chrome进程(所有网页都关闭)
- Robberies---hdu2955(概率dp,01背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 题目给了每个银行的钱和被抓的概率,由于要抢尽量多的钱,所以要保证尽量不被抓,而抢多个银行之后不被 ...
- CF #301 A :Combination Lock(简单循环)
A :Combination Lock 题意就是有一个密码箱,密码是n位数,现在有一个当前箱子上显示密码A和正确密码B,求有A到B一共至少需要滚动几次: 简单循环: