地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=1403

题目:

Longest Common Substring

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6296    Accepted Submission(s): 2249

Problem Description
Given two strings, you have to tell the length of the Longest Common Substring of them.

For example:
str1 = banana
str2 = cianaic

So the Longest Common Substring is "ana", and the length is 3.

 
Input
The input contains several test cases. Each test case contains two strings, each string will have at most 100000 characters. All the characters are in lower-case.

Process to the end of file.

 
Output
For each test case, you have to tell the length of the Longest Common Substring of them.
 
Sample Input
banana
cianaic
 
Sample Output
3
 
Author
Ignatius.L
 

思路:把两个字符串连接起来,中间用一个没出现过的字符隔开。

  然后二分答案,二分check时对height进行分组,判断height值全大于x的组内 是否同时包含两个字符串的子串

  

  1. #include <cstdlib>
  2. #include <cstring>
  3. #include <cstdio>
  4. #include <algorithm>
  5.  
  6. const int N = ;
  7. int sa[N],s[N],wa[N], wb[N], ws[N], wv[N];
  8. int rank[N], height[N];
  9.  
  10. bool cmp(int r[], int a, int b, int l)
  11. {
  12. return r[a] == r[b] && r[a+l] == r[b+l];
  13. }
  14.  
  15. void da(int r[], int sa[], int n, int m)
  16. {
  17. int i, j, p, *x = wa, *y = wb;
  18. for (i = ; i < m; ++i) ws[i] = ;
  19. for (i = ; i < n; ++i) ws[x[i]=r[i]]++;
  20. for (i = ; i < m; ++i) ws[i] += ws[i-];
  21. for (i = n-; i >= ; --i) sa[--ws[x[i]]] = i;
  22. for (j = , p = ; p < n; j *= , m = p)
  23. {
  24. for (p = , i = n - j; i < n; ++i) y[p++] = i;
  25. for (i = ; i < n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
  26. for (i = ; i < n; ++i) wv[i] = x[y[i]];
  27. for (i = ; i < m; ++i) ws[i] = ;
  28. for (i = ; i < n; ++i) ws[wv[i]]++;
  29. for (i = ; i < m; ++i) ws[i] += ws[i-];
  30. for (i = n-; i >= ; --i) sa[--ws[wv[i]]] = y[i];
  31. for (std::swap(x, y), p = , x[sa[]] = , i = ; i < n; ++i)
  32. x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p- : p++;
  33. }
  34. }
  35.  
  36. void calheight(int r[], int sa[], int n)
  37. {
  38. int i, j, k = ;
  39. for (i = ; i <= n; ++i) rank[sa[i]] = i;
  40. for (i = ; i < n; height[rank[i++]] = k)
  41. for (k?k--:, j = sa[rank[i]-]; r[i+k] == r[j+k]; k++);
  42. }
  43. bool check(int la,int lb,int lc,int x)
  44. {
  45. int m1=,m2=;
  46. if(sa[]<la)m1=;
  47. if(sa[]>la)m2=;
  48. for(int i=;i<=lc;i++)
  49. {
  50. if(height[i]<x)
  51. {
  52. if(m1&&m2)
  53. return ;
  54. m1=m2=;
  55. }
  56. if(sa[i]<la)m1=;
  57. if(sa[i]>la)m2=;
  58. }
  59. return m1&&m2;
  60. }
  61. char ss[N];
  62. int main()
  63. {
  64. while(scanf("%s",ss)==)
  65. {
  66. int la=strlen(ss),lb,n=;
  67. for(int i=;i<la;i++)
  68. s[n++]=ss[i]-'a'+;
  69. s[n++]=;
  70. scanf("%s",ss);
  71. lb=strlen(ss);
  72. for(int i=;i<lb;i++)
  73. s[n++]=ss[i]-'a'+;
  74. s[n]=;
  75. da(s,sa,n+,);
  76. calheight(s,sa,n);
  77. int l=,r=la,ans=;
  78. while(l<=r)
  79. {
  80. int mid=l+r>>;
  81. if(check(la,lb,n,mid))
  82. ans=mid,l=mid+;
  83. else
  84. r=mid-;
  85. }
  86. printf("%d\n",ans);
  87. }
  88. return ;
  89. }

hdu1403 Longest Common Substring的更多相关文章

  1. [HDU1403]Longest Common Substring(后缀数组)

    传送门 求两个串的公共子串(注意,这个公共子串是连续的一段) 把两个串连在一起,中间再加上一个原字符串中不存在的字符,避免过度匹配. 求一遍height,再从height中找满足条件的最大值即可. 为 ...

  2. HDU 1403 Longest Common Substring(后缀自动机——附讲解 or 后缀数组)

    Description Given two strings, you have to tell the length of the Longest Common Substring of them. ...

  3. SPOJ LCS2 - Longest Common Substring II

    LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite ...

  4. LintCode Longest Common Substring

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-substring/# 题目: Given two strings, find th ...

  5. Longest Common Substring

    Given two strings, find the longest common substring. Return the length of it. Example Given A = &qu ...

  6. 【SPOJ】1812. Longest Common Substring II(后缀自动机)

    http://www.spoj.com/problems/LCS2/ 发现了我原来对sam的理解的一个坑233 本题容易看出就是将所有匹配长度记录在状态上然后取min后再对所有状态取max. 但是不要 ...

  7. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  8. 后缀自动机(SAM):SPOJ Longest Common Substring II

    Longest Common Substring II Time Limit: 2000ms Memory Limit: 262144KB A string is finite sequence of ...

  9. 后缀自动机(SAM) :SPOJ LCS - Longest Common Substring

    LCS - Longest Common Substring no tags  A string is finite sequence of characters over a non-empty f ...

随机推荐

  1. spring配置文件头部配置解析

    http://blog.csdn.net/f_639584391/article/details/50167321

  2. 分页技巧_测试并继续改进分页用的QueryHelper辅助对象

    分页技巧_测试并继续改进分页用的QueryHelper辅助对象 QueryHelper.java /** * 用于辅助拼接HQL语句 */ public class QueryHelper { pri ...

  3. ios开发--图文混排(富文本)

    最近准备接一个编辑类的app,所以就查了下相关的功能,并自己试验了下: /** iOS 6之前:CoreText,纯C语言,极其蛋疼 iOS 6开始:NSAttributedString,简单易用 i ...

  4. SqlSession接口和Executor

    mybatis框架在操作数据的时候,离不开SqlSession接口实例类的作用.可以说SqlSession接口实例是开发过程中打交道最多的一个类.即是DefaultSqlSession类.如果笔者记得 ...

  5. JSP小例子——以Model1的思想实现用户登录小例子(不涉及DB操作)

    Model1简介现在比较流行的就是Model1和Model2,这里介绍Model1.在Model1模型出现前,整个Web应用的情况是:几乎全部由JSP页面组成,JSP页面接受处理客户端请求,对请求处理 ...

  6. git与sourceTree

    Window:http://my.oschina.net/lunqi/blog/500881?fromerr=bzaPk1Lx MAC:http://www.ithao123.cn/content-8 ...

  7. java框架---->RxJava的使用(一)

    RxJava是响应式程序设计的一种实现.在响应式程序设计中,当数据到达的时候,消费者做出响应.响应式编程可以将事件传递给注册了的observer.今天我们就来学习一下rxJava,并分析一下它源码感受 ...

  8. PHPStorm自动压缩YUI Compressor配置

    File---Settings...---Tools---File Watchers 点击右边加号,添加: 在弹出窗中 主要是Program的内容,点击后面的省略点,默认目录下回出现yuicompre ...

  9. 【POJ1275】Cashier Employment 差分约束

    [POJ1275]Cashier Employment 题意: 超市经历已经提供一天里每一小时需要出纳员的最少数量————R(0),R(1),...,R(23).R(0)表示从午夜到凌晨1:00所需要 ...

  10. jquery如何把一个html元素替换成另外一个html元素?

    1.replaceWith( )   使用括号内的内容替换所选择的内容.              $("#div").replaceWith("<p id=&qu ...