matlab下kmeans及pam算法对球型数据分类练习
clear all;
clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%数据初始化
Data=zeros(,);
%加噪声
for i=:
Data(,i)=;
Data(,i)=;
Data(,i)=;
end
for i=:
p=unifrnd(,);
a=unifrnd(,*pi);
b=unifrnd(,pi);
Data(,i)=p*sin(a)*cos(b);
Data(,i)=p*sin(a)*sin(b);
Data(,i)=p*cos(a);
end
for i=:
p=unifrnd(,);
a=unifrnd(,*pi);
b=unifrnd(,pi);
Data(,i)=p*sin(a)*cos(b);
Data(,i)=p*sin(a)*sin(b);
Data(,i)=p*cos(a);
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%样本数量
[d,N]=size(Data);
%聚类的数目
K=;
%方法选择
method='kmeans';
%method='kmedoids';
%选取初始点
%max_Initial=max(,N/(*K));
max_Initial=; label=zeros(max_Initial,N);
center=zeros(d,K,max_Initial);
C=zeros(,N); %主循环
for initial_Case=:max_Initial
pointK=Initial_center(Data,K);
iter=;
max_iter=1e+;
% xK = pointK;
disp(['------------KM进行第 ' num2str(initial_Case) ' 次重新选择初始中心-----------'])
%%每次初始化K个中心点后,进行的循环
while iter < max_iter
iter = iter+;
if mod(iter,)==
disp([' 内部循环进行第 ' num2str(iter) ' 次迭代'])
end
%%%根据数据矩阵P中每个点到中心点的距离(最小)确定所属分类
for i=:N
dert = repmat(Data(:,i),,K)-pointK;
distK=sqrt(diag(dert'*dert));
[~,j] = min(distK);
C(i) = j;
end
%%%重新计算K个中心点
xK_=zeros(d,K);
for i=:K
Pi=Data(:,find(C==i));
Nk = size(Pi,);
% K-Means K-Medoids唯一不同的地方:选择中心点的方式
switch lower(method)
case 'kmeans'
xK_(:,i) = sum(Pi,)/Nk;
case 'kmedoids'
Dx2 = zeros(,Nk);
for t=:Nk
dx=Pi-Pi(:,t)*ones(,Nk);
Dx2(t)=sum(sqrt(sum(dx.*dx,)),);
end
[~,min_ind] = min(Dx2);
xK_(:,i) = Pi(:,min_ind);
otherwise
errordlg('请输入正确的方法:kmeans-OR-kmedoids','MATLAB error');
end
end
%判断是否达到结束条件
if xK_==pointK % & iter>
disp(['###迭代 ' num2str(iter) ' 次得到收敛的解'])
label(initial_Case,:) = C;
center(:,:,initial_Case) = xK_;
% plot_Graph(C);
break;
end
pointK=xK_;
%xK = xK_;
end
if iter == max_iter
disp('###达到内部最大迭代次数1000,未得到收敛的解');
label(initial_Case,:) = C;
center(:,:,initial_Case) = xK_;
%plot_Graph(C);
%break
end
end %%%%增加对聚类结果最优性的比较
%距离差
dist_N = zeros(max_Initial,K);
for initial_Case=:max_Initial
for k=:K
tem=find(label(initial_Case,:)==k);
dx=Data(:,tem)-center(:,k,initial_Case)*ones(,size(tem,));
dxk=sqrt(sum(dx.*dx,));
dist_N(initial_Case,k)=sum(dxk);
%dist_N(initial_Case,k)=dxk;
end
end %%%%对于max_Initial次初始化中心点得到的分类错误
%%%%取错误最小的情况的Label作为最终分类
%求K类总的误差
dist_N_sum=sum(dist_N,);
[distmin,best_ind]=min(dist_N_sum);
%最佳分组
best_Label=label(best_ind,:);
%最佳中心
best_Center=center(:,:,best_ind);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%三维散布图
figure();
scatter3(Data(,:),Data(,:),Data(,:),'filled','cdata',best_Label);
title('Data Distribution');
function center=Initial_center(X,K)
%选取初始中心
N=size(X,);
rnd_Idx = randperm(N);
center = X(:,rnd_Idx(:K));
end
matlab下kmeans及pam算法对球型数据分类练习的更多相关文章
- matlab下K-means Cluster 算法实现
一.概念介绍 K-means算法是硬聚类算法,是典型的局域原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则.K-means算法以欧 ...
- matlab下二重积分的蒙特卡洛算法
%%monte_carlo_ff.m %被积函数(二重) function ff=monte_carlo_ff(x,y) ff=x*y^2;%函数定义处 end %%monte_carlo.m %蒙特 ...
- [ZZ] 基于Matlab的标记分水岭分割算法
基于Matlab的标记分水岭分割算法 http://blog.sina.com.cn/s/blog_725866260100rz7x.html 1 综述 Separating touching obj ...
- Matlab函数kmeans
Matlab函数kmeans K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Km ...
- 【转】 MATLAB下如何指定GPU资源
[转] MATLAB下如何指定GPU资源 原文链接
- MATLAB实例:Munkres指派算法
MATLAB实例:Munkres指派算法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 指派问题陈述 指派问题涉及将机器分配给任务,将工人分配给 ...
- Matlab下的文件执行路径
Matlab下有时命令出错,源于Command窗口的路径不正确.快捷键的执行会受此影响.
- Matlab下imwrite,Uint16的深度图像
Matlab下imwrite,Uint16的深度图像 1. 在Matlab命令窗口输入命令: help imwrite 会有如下解释: If the input array is of class u ...
- 痞子衡嵌入式:MCUXpresso IDE下使用J-Link下载算法在Flash调试注意事项(i.MXRT500为例)
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是MCUXpresso IDE下使用J-Link下载算法在Flash调试注意事项. 痞子衡前段时间写过一篇小文<为i.MXRT设计更 ...
随机推荐
- RabbitMQ入门(6)——远程过程调用(RPC)
在RabbitMQ入门(2)--工作队列中,我们学习了如何使用工作队列处理在多个工作者之间分配耗时任务.如果我们需要运行远程主机上的某个方法并等待结果怎么办呢?这种模式就是常说的远程过程调用(Remo ...
- 物料类型AM11没有任务清单类型N定义
CA01 创建工艺路线时报错信息:“物料类型AM11没有为任务清单类型N定义” (如下图) 处理方法: 配置路径:生产->基本数据->工艺路线->通用数据->定义物料类型分配 ...
- 关于javascript以及jquery如何打开文件
其实很简单, <input type="file" id="file" mce_style="display:none"> 这个 ...
- RestTemplate请求https忽略证书认证
RestTemplate是Spring提供的用于访问Rest服务的客户端,提供了多种便捷访问远程Http服务的方法,能够大大提高客户端的编写效率.RestTemplate 默认使用J2SE提供的方式( ...
- 【转】Java运行时数据区简介及堆与栈的区别
理解JVM运行时的数据区是Java编程中的进阶部分.我们在开发中都遇到过一个很头疼的问题就是OutOfMemoryError(内存溢出错误),但是如果我们了解JVM的内部实现和其运行时的数据区的工作机 ...
- mongodb禁止外网访问以及添加账号
未曾料到被黑客勒索比特币的戏码竟然降临到我的身上,几个月的技术积累付之一炬.怪只怪自己学艺不精,心存侥幸和无知,不过经此一役,方知网络安全防护的重要性. 一直未给自己的mongodb数据库设置账号密码 ...
- arm中的几个公式的比较
串口 UART0.UBRDIVO=0X4d; 设置波特率 12000000/9600/16 -1=77化为16进制就是4dADC AD converter freq =50MHZ/(49+1) =1M ...
- Highcharts 动态图
Highcharts 动态图 每秒更新曲线图 chart.events chart.event 属性中添加 load 方法(图表加载事件).在 1000 毫秒内随机产生数据点并生成图表. chart: ...
- python 黑客书籍 ——扫描+暴力破解
https://legacy.gitbook.com/book/germey/net-security/details 网络安全 介绍 构建一个端口扫描器 利用Pexpect模拟SSH连接 利用Pxs ...
- MySql设计规范及SQL索引优化【呕心之作】
数据库及表结构基本设计规范 1. 所有表必须使用Innodb存储引擎 没有特殊要求(即Innodb无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用Innodb存储引擎(mysql5. ...