路径方案数 [SPFA,拓扑排序]
路径方案数
[题目描述]
给一张无向图,n 个点和 m 条边,cyb 在 1 号点,他要去 2 号点, cyb 可以从 a 走到 b,当且仅当 a 到 2 的最短路,比 b 到 2 的最短路长。 求 cyb 的路径方案数 两条路径不同,当且仅当将两条路径中依次经过的边的编号不完全相同, 图可能会有重边; 由于答案可能很大, 只需要输出答案对于 10^9+9 取模的值即可
[输入文件]
第一行两个正整数 n,m 接下来 m 行 每行 x,y,z 表示有一条边,长度为 z,链接了 x,y
[输出文件]
一个正整数表示答案
[输入样例 1]
5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
[输出样例 1]
2
[输入样例 2]
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
[输出样例 2]
4
[数据范围]
30%: N<=100,M<=1000
100%: N<=50000,,M<=100000
每条边的长度<=1000
分析:
上午考试我是真的不知道在干什么,这个基本的最短路然后重建边再拓扑也没看出来。。。
spfa以2为起点跑一遍,然后按照要求重建边再跑拓扑即可。但是有一个问题,因为重建边后1的入度可能不为0,那么就反向建边,因为可以保证2的入度一定为0。然后跑拓扑就行了。
Code:
//It is made by HolseLee on 20th July 2018
//mod
#include<bits/stdc++.h>
using namespace std;
const int N=5e4+;
const int M=2e5+;
const int mod=1e9+;
int n,m,v[N],head[N],size;
int dis[N],dg[N],ans;
bool vis[N],rx[M];
struct Node{
int to,next,val;
}edge[M];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline void add(int x,int y,int z)
{
edge[++size].to=y;
edge[size].val=z;
edge[size].next=head[x];
head[x]=size;
}
void spfa(int sta)
{
memset(dis,0x7f,sizeof(dis));
memset(vis,false,sizeof(vis));
queue<int>t;t.push(sta);
dis[sta]=;vis[sta]=true;
while(!t.empty()){
int x=t.front();t.pop();vis[x]=false;
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].to;
if(dis[y]>dis[x]+edge[i].val){
dis[y]=dis[x]+edge[i].val;
if(!vis[y])t.push(y),vis[y]=true;
}
}
}
}
void remake()
{
for(int x=;x<=n;x++){
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].to;
if(dis[x]<dis[y]){
rx[i]=true;dg[y]++;
}
}
}
}
void toplogic(int sta)
{
queue<int>t;t.push(sta);
memset(v,,sizeof(v));
v[sta]=;
while(!t.empty()){
int x=t.front();t.pop();
for(int i=head[x];i!=-;i=edge[i].next){
if(rx[i]&&dg[edge[i].to]){
int y=edge[i].to;v[y]=(v[y]+v[x])%mod;--dg[y];
if(dg[y]==)t.push(y);
}
}
}
}
int main()
{
freopen("mod.in","r",stdin);
freopen("mod.out","w",stdout);
n=read();m=read();int x,y,z;
memset(head,-,sizeof(head));
for(int i=;i<=m;i++){
x=read();y=read();z=read();
add(x,y,z);add(y,x,z);}
spfa();remake();toplogic();
printf("%d\n",v[]);
return ;
}
路径方案数 [SPFA,拓扑排序]的更多相关文章
- 路径方案数(mod)
路径方案数(mod) [题目描述] 给一张无向图,n 个点和 m 条边,cyb 在 1 号点,他要去 2 号点, cyb 可以从 a 走到 b,当且仅当a到2的最短路,比b 到2的最短路长. 求 cy ...
- ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」
传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...
- bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1944 Solved: 759[Submit][St ...
- LGV 引理——二维DAG上 n 点对不相交路径方案数
文章目录 引入 简介 定义 引理 证明 例题 释疑 扩展 引入 有这样一个问题: 甲和乙在一张网格图上,初始位置 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_ ...
- [BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)
Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...
- 路径方案数_mod_SPFA_记忆化搜索_C++
本文含有原创题,涉及版权利益问题,严禁转载,违者追究法律责任 本来是写个 DP 分分钟就 A 了,结果老师要我们写记忆化搜索(无奈脸) 算啦,随手一改又是一个标准的记忆化搜索(目测好像是记忆化搜索容易 ...
- bzoj 1880: [Sdoi2009]Elaxia的路线【spfa+拓扑排序】
有趣啊 先spfa分别求出以s1,t1,s2,t2为起点的最短路,然后把在s1-->t1或者s2-->t2最短路上的边重新建有向图,跑拓扑最长路即可 #include<iostrea ...
- BZOJ4383 Pustynia(线段树+拓扑排序)
线段树优化建图暴力拓扑排序即可.对于已确定的数,拓扑排序时dp,每个节点都尽量取最大值,如果仍与已确定值矛盾则无解.叶子连出的边表示大于号,其余边表示大于等于. #include<iostrea ...
- 不相交路径[BZOJ1471] 容斥原理 拓扑排序
最近学容斥的时候又碰到一道类似的题目,所以想分享一个套路,拿这题来举例 [题目描述] 给出一个\(N(N\leq 150)\)个结点的有向无环简单图.给出4个不同的点\(a,b,c,d\),定义不相交 ...
随机推荐
- struts标签错误:Can not find the tag library descriptor for "http://java.sun.com/jsp/jstl/core"
今天使用eclipse开发ssh,出现Can not find the tag library descriptor for "http://java.sun.com/jsp/jstl/co ...
- 前端PHP入门-029-文件操作-掌握级别
人生只有三天,活在昨天的人迷惑:活在明天的人等待:活在今天的人最踏实.你永远无法预测意外和明天哪个来得更早,所以,我们能做的,就是尽最大的努力过好今天.请记住:今天永远是昨天死去的人所期待的明天. f ...
- 前端PHP入门-023-重点日期函数之程序执行时间检测
我们有的时经常需要做程序的执行时间执行效率判断. 实现的思路如下: <?php //记录开始时间 //记录结整时 // 开始时间 减去(-) 结束时间 得到程序的运行时间 ?> 可是大家不 ...
- 前端PHP入门-016-静态变量
如果我想知道函数被调用了多少次怎么办?在没有学习静态变量的时候,我们没有好的办法来解决. 静态变量的特点是:声明一个静态变量,第二次调用函数的时候,静态变量不会再初始化变量,会在原值的基础上读取执行. ...
- ubuntu环境下添加中文输入法
1.下载软件包 打开终端,输入命令 sudo apt-get install fcitx-table-wbpy 2.打开 system settings-> language support-& ...
- 修复 Plugin execution not covered by lifecycle configuration: org.codehaus.mojo:build-helper-maven-plugin:1.8:add-source (execution: add-source, phase: generate-sources)
在maven项目中使用add-source时,pom.xml报如下错误: Plugin execution not covered by lifecycle configuration: org.co ...
- 【leetcode 简单】第三十三题 验证回文串
给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写. 说明:本题中,我们将空字符串定义为有效的回文串. 示例 1: 输入: "A man, a plan, a c ...
- NYOJ 1012 RMQ with Shifts (线段树)
题目链接 In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each q ...
- 蓝色的cms网站后台管理模板——后台
链接:http://pan.baidu.com/s/1c138cwC 密码:9vy9
- docker 升级后,配置 idea 连接 docker
[root@A01-R02-I188-87 ~]# docker version Client: Version: 18.06.1-ce API version: 1.24 Go version: g ...