Linux下的进程间通信-详解
首先,进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法。但一般说来, 进程间通信(IPC:InterProcess Communication)不包括这种似乎比较低级的通信方法。Unix系统中实现进程间通信的方法很多,而且不幸的是,极少方法能在所有的Unix系 统中进行移植(唯一一种是半双工的管道,这也是最原始的一种通信方式)。而Linux作为一种新兴的操作系统,几乎支持所有的Unix下常用的进程间通信 方法:管道、消息队列、共享内存、信号量、套接口等等。下面我们将逐一介绍。
2.3.1 管道
管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者用于父进程和子进程间的通信,后者用于运行于同一台机器上的任意两个进程间的通信。
无名管道由pipe()函数创建:
#include <unistd.h>
int pipe(int filedis[2]);
参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。下面的例子示范了如何在父进程和子进程间实现通信。
#define INPUT 0
#define OUTPUT 1
void main() {
int file_descriptors[2];
/*定义子进程号 */
pid_t pid;
char buf[256];
int returned_count;
/*创建无名管道*/
pipe(file_descriptors);
/*创建子进程*/
if((pid = fork()) == -1) {
printf("Error in fork/n");
exit(1);
}
/*执行子进程*/
if(pid == 0) {
printf("in the spawned (child) process.../n");
/*子进程向父进程写数据,关闭管道的读端*/
close(file_descriptors[INPUT]);
write(file_descriptors[OUTPUT], "test data", strlen("test data"));
exit(0);
} else {
/*执行父进程*/
printf("in the spawning (parent) process.../n");
/*父进程从管道读取子进程写的数据,关闭管道的写端*/
close(file_descriptors[OUTPUT]);
returned_count = read(file_descriptors[INPUT], buf, sizeof(buf));
printf("%d bytes of data received from spawned process: %s/n",
returned_count, buf);
}
}
在Linux系统下,有名管道可由两种方式创建:命令行方式mknod系统调用和函数mkfifo。下面的两种途径都在当前目录下生成了一个名为myfifo的有名管道:
方式一:mkfifo("myfifo","rw");
方式二:mknod myfifo p
生成了有名管道后,就可以使用一般的文件I/O函数如open、close、read、write等来对它进行操作。下面即是一个简单的例子,假设我们已经创建了一个名为myfifo的有名管道。
/* 进程一:读有名管道*/
#include <stdio.h>
#include <unistd.h>
void main() {
FILE * in_file;
int count = 1;
char buf[80];
in_file = fopen("mypipe", "r");
if (in_file == NULL) {
printf("Error in fdopen./n");
exit(1);
}
while ((count = fread(buf, 1, 80, in_file)) > 0)
printf("received from pipe: %s/n", buf);
fclose(in_file);
}
/* 进程二:写有名管道*/
#include <stdio.h>
#include <unistd.h>
void main() {
FILE * out_file;
int count = 1;
char buf[80];
out_file = fopen("mypipe", "w");
if (out_file == NULL) {
printf("Error opening pipe.");
exit(1);
}
sprintf(buf,"this is test data for the named pipe example/n");
fwrite(buf, 1, 80, out_file);
fclose(out_file);
}
2.3.2 消息队列
消息队列用于运行于同一台机器上的进程间通信,它和管道很相似,是一个在系统内核中用来保存消息的队列,它在系统内核中是以消息链表的形式出现。消息链表中节点的结构用msg声明。
事实上,它是一种正逐渐被淘汰的通信方式,我们可以用流管道或者套接口的方式来取代它,所以,我们对此方式也不再解释,也建议读者忽略这种方式。
2.3.3 共享内存
共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行 读写。得到共享内存有两种方式:映射/dev/mem设备和内存映像文件。前一种方式不给系统带来额外的开销,但在现实中并不常用,因为它控制存取的将是 实际的物理内存,在Linux系统下,这只有通过限制Linux系统存取的内存才可以做到,这当然不太实际。常用的方式是通过shmXXX函数族来实现利 用共享内存进行存储的。
首先要用的函数是shmget,它获得一个共享存储标识符。
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key, int size, int flag);
这个函数有点类似大家熟悉的malloc函数,系统按照请求分配size大小的内存用作共享内存。Linux系统内核中每个IPC结构都有的一个非负整数 的标识符,这样对一个消息队列发送消息时只要引用标识符就可以了。这个标识符是内核由IPC结构的关键字得到的,这个关键字,就是上面第一个函数的 key。数据类型key_t是在头文件sys/types.h中定义的,它是一个长整形的数据。在我们后面的章节中,还会碰到这个关键字。
当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。
void *shmat(int shmid, void *addr, int flag);
shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地址,进程可以对此进程进行读写操作。
使用共享存储来实现进程间通信的注意点是对数据存取的同步,必须确保当一个进程去读取数据时,它所想要的数据已经写好了。通常,信号量被要来实现对共享存 储数据存取的同步,另外,可以通过使用shmctl函数设置共享存储内存的某些标志位如SHM_LOCK、SHM_UNLOCK等来实现。
2.3.4 信号量
信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。本质上,信号量是一个计数器,它用来记录对某个资源(如共享内存)的存取状况。一般说来,为了获得共享资源,进程需要执行下列操作:
(1) 测试控制该资源的信号量。
(2) 若此信号量的值为正,则允许进行使用该资源。进程将信号量减1。
(3) 若此信号量为0,则该资源目前不可用,进程进入睡眠状态,直至信号量值大于0,进程被唤醒,转入步骤(1)。
(4) 当进程不再使用一个信号量控制的资源时,信号量值加1。如果此时有进程正在睡眠等待此信号量,则唤醒此进程。
维护信号量状态的是Linux内核操作系统而不是用户进程。我们可以从头文件/usr/src/linux/include /linux /sem.h 中看到内核用来维护信号量状态的各个结构的定义。信号量是一个数据集合,用户可以单独使用这一集合的每个元素。要调用的第一个函数是semget,用以获 得一个信号量ID。
struct sem {
short sempid;/* pid of last operaton */
ushort semval;/* current value */
ushort semncnt;/* num procs awaiting increase in semval */
ushort semzcnt;/* num procs awaiting semval = 0 */
}
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget(key_t key, int nsems, int flag);
key是前面讲过的IPC结构的关键字,flag将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新 集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。
semctl函数用来对信号量进行操作。
int semctl(int semid, int semnum, int cmd, union semun arg);
不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。
semop函数自动执行信号量集合上的操作数组。
int semop(int semid, struct sembuf semoparray[], size_t nops);
semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。
下面,我们看一个具体的例子,它创建一个特定的IPC结构的关键字和一个信号量,建立此信号量的索引,修改索引指向的信号量的值,最后我们清除信号量。在下面的代码中,函数ftok生成我们上文所说的唯一的IPC关键字。
#include <stdio.h>
#include <sys/types.h>
#include <sys/sem.h>
#include <sys/ipc.h>
void main() {
key_t unique_key; /* 定义一个IPC关键字*/
int id;
struct sembuf lock_it;
union semun options;
int i;
unique_key = ftok(".", 'a'); /* 生成关键字,字符'a'是一个随机种子*/
/* 创建一个新的信号量集合*/
id = semget(unique_key, 1, IPC_CREAT | IPC_EXCL | 0666);
printf("semaphore id=%d/n", id);
options.val = 1; /*设置变量值*/
semctl(id, 0, SETVAL, options); /*设置索引0的信号量*/
/*打印出信号量的值*/
i = semctl(id, 0, GETVAL, 0);
printf("value of semaphore at index 0 is %d/n", i);
/*下面重新设置信号量*/
lock_it.sem_num = 0; /*设置哪个信号量*/
lock_it.sem_op = -1; /*定义操作*/
lock_it.sem_flg = IPC_NOWAIT; /*操作方式*/
if (semop(id, &lock_it, 1) == -1) {
printf("can not lock semaphore./n");
exit(1);
}
i = semctl(id, 0, GETVAL, 0);
printf("value of semaphore at index 0 is %d/n", i);
/*清除信号量*/
semctl(id, 0, IPC_RMID, 0);
}
可以使用系统调用semget()创建一个新的信号量集,或者存取一个已经存在的信号量集:
原型:intsemget(key_t key,int nsems,int semflg);
返回值:如果成功,则返回信号量集的IPC标识符。如果失败,则返回-1:errno=EACCESS(没有权限)
EEXIST(信号量集已经存在,无法创建)
EIDRM(信号量集已经删除)
ENOENT(信号量集不存在,同时没有使用IPC_CREAT)
ENOMEM(没有足够的内存创建新的信号量集)
ENOSPC(超出限制)
下面是一个打开和创建信号量集的程序:
intopen_semaphore_set(key_t keyval,int numsems)
{
intsid;
if(!numsems)
return(-1);
if((sid=semget(mykey,numsems,IPC_CREAT|0660))==-1)
{
return(-1);
}
return(sid);
}
};
semop()
系统调用:semop();
调用原型:int semop(int semid,struct sembuf*sops,unsign ednsops);
返回值:0,如果成功。-1,如果失败:errno=E2BIG(nsops大于最大的ops数目)
EACCESS(权限不够)
EAGAIN(使用了IPC_NOWAIT,但操作不能继续进行)
EFAULT(sops指向的地址无效)
EIDRM(信号量集已经删除)
EINTR(当睡眠时接收到其他信号)
EINVAL(信号量集不存在,或者semid无效)
ENOMEM(使用了SEM_UNDO,但无足够的内存创建所需的数据结构)
ERANGE(信号量值超出范围)
structsembuf{
ushortsem_num;/*semaphore index in array*/
shortsem_op;/*semaphore operation*/
shortsem_flg;/*operation flags*/
sem_num将要处理的信号量的个数。
sem_op要执行的操作。
sem_flg操作标志。
semctl()
系统调用:semctl();
原型:int semctl(int semid,int semnum,int cmd,union semunarg);
返回值:如果成功,则为一个正数。
如果失败,则为-1:errno=EACCESS(权限不够)
EFAULT(arg指向的地址无效)
EIDRM(信号量集已经删除)
EINVAL(信号量集不存在,或者semid无效)
EPERM(EUID没有cmd的权利)
ERANGE(信号量值超出范围)
系统调用semctl()的第一个参数是关键字值。第二个参数是信号量数目。
·IPC_STAT读取一个信号量集的数据结构semid_ds,并将其存储在semun中的buf参数中。
·IPC_SET设置信号量集的数据结构semid_ds中的元素ipc_perm,其值取自semun中的buf参数。
·IPC_RMID将信号量集从内存中删除。
·GETALL用于读取信号量集中的所有信号量的值。
·GETNCNT返回正在等待资源的进程数目。
·GETPID返回最后一个执行semop操作的进程的PID。
·GETVAL返回信号量集中的一个单个的信号量的值。
·GETZCNT返回这在等待完全空闲的资源的进程数目。
·SETALL设置信号量集中的所有的信号量的值。
·SETVAL设置信号量集中的一个单独的信号量的值。
/*arg for semctl systemcalls.*/
unionsemun{
intval;/*value for SETVAL*/
structsemid_ds*buf;/*buffer for IPC_STAT&IPC_SET*/
ushort*array;/*array for GETALL&SETALL*/
structseminfo*__buf;/*buffer for IPC_INFO*/
void*__pad;
下面的程序返回信号量的值。当使用GETVAL命令时,调用中的最后一个参数被忽略:
{
return(semctl(sid,semnum,GETVAL,0));
}
printer_usage()
{
int x;
for(x=0;x<MAX_PRINTERS;x++)
printf("Printer%d:%d/n/r",x,get_sem_val(sid,x));
}
{
union semunsemopts;
semopts.val=initval;
semctl(sid,semnum,SETVAL,semopts);
}
2.3.5 套接口
套接口(socket)编程是实现Linux系统和其他大多数操作系统中进程间通信的主要方式之一。我们熟知的WWW服务、FTP服务、TELNET服务 等都是基于套接口编程来实现的。除了在异地的计算机进程间以外,套接口同样适用于本地同一台计算机内部的进程间通信。关于套接口的经典教材同样是 Richard Stevens编著的《Unix网络编程:联网的API和套接字》,清华大学出版社出版了该书的影印版。它同样是Linux程序员的必备书籍之一。
关于这一部分的内容,可以参照本文作者的另一篇文章《设计自己的网络蚂蚁》,那里由常用的几个套接口函数的介绍和示例程序。这一部分或许是Linux进程 间通信编程中最须关注和最吸引人的一部分,毕竟,Internet 正在我们身边以不可思议的速度发展着,如果一个程序员在设计编写他下一个程序的时候,根本没有考虑到网络,考虑到Internet,那么,可以说,他的设 计很难成功。
3 Linux的进程和Win32的进程/线程比较
熟悉WIN32编程的人一定知道,WIN32的进程管理方式与Linux上有着很大区别,在UNIX里,只有进程的概念,但在WIN32里却还有一个"线程"的概念,那么Linux和WIN32在这里究竟有着什么区别呢?
WIN32里的进程/线程是继承自OS/2的。在WIN32里,"进程"是指一个程序,而"线程"是一个"进程"里的一个执行"线索"。从核心上讲, WIN32的多进程与Linux并无多大的区别,在WIN32里的线程才相当于Linux的进程,是一个实际正在执行的代码。但是,WIN32里同一个进 程里各个线程之间是共享数据段的。这才是与Linux的进程最大的不同。
下面这段程序显示了WIN32下一个进程如何启动一个线程。
int g;
DWORD WINAPI ChildProcess( LPVOID lpParameter ){
int i;
for ( i = 1; i <1000; i ++) {
g ++;
printf( "This is Child Thread: %d/n", g );
}
ExitThread( 0 );
};
void main()
{
int threadID;
int i;
g = 0;
CreateThread( NULL, 0, ChildProcess, NULL, 0, &threadID );
for ( i = 1; i <1000; i ++) {
g ++;
printf( "This is Parent Thread: %d/n", g );
}
}
在WIN32下,使用CreateThread函数创建线程,与Linux下创建进程不同,WIN32线程不是从创建处开始运行的,而是由 CreateThread指定一个函数,线程就从那个函数处开始运行。此程序同前面的UNIX程序一样,由两个线程各打印1000条信息。 threadID是子线程的线程号,另外,全局变量g是子线程与父线程共享的,这就是与Linux最大的不同之处。大家可以看出,WIN32的进程/线程 要比Linux复杂,在Linux要实现类似WIN32的线程并不难,只要fork以后,让子进程调用ThreadProc函数,并且为全局变量开设共享 数据区就行了,但在WIN32下就无法实现类似fork的功能了。所以现在WIN32下的C语言编译器所提供的库函数虽然已经能兼容大多数 Linux/UNIX的库函数,但却仍无法实现fork。
对于多任务系统,共享数据区是必要的,但也是一个容易引起混乱的问题,在WIN32下,一个程序员很容易忘记线程之间的数据是共享的这一情况,一个线程修 改过一个变量后,另一个线程却又修改了它,结果引起程序出问题。但在Linux下,由于变量本来并不共享,而由程序员来显式地指定要共享的数据,使程序变 得更清晰与安全。
至于WIN32的"进程"概念,其含义则是"应用程序",也就是相当于UNIX下的exec了。
Linux也有自己的多线程函数pthread,它既不同于Linux的进程,也不同于WIN32下的进程,关于pthread的介绍和如何在Linux环境下编写多线程程序我们将在另一篇文章《Linux下的多线程编程》中讲述。
Linux下的进程间通信-详解的更多相关文章
- Linux下ps命令详解 Linux下ps命令的详细使用方法
http://www.jb51.net/LINUXjishu/56578.html Linux下的ps命令比较常用 Linux下ps命令详解Linux上进程有5种状态:1. 运行(正在运行或在运行队列 ...
- Linux下rar命令详解
Linux下rar命令详解 用法: rar <命令> -<选项1> ….-<选项N> < 操作文档> <文件…> <@文件列表…> ...
- linux下tar命令详解
linux下tar命令详解 tar是Linux环境下最常用的备份工具之一.tar(tap archive)原意为操作磁带文件,但基于Linux的文件操作机制,同样也可适用于普通的磁盘文件.ta ...
- Linux下chkconfig命令详解(转)
Linux下chkconfig命令详解 chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. ...
- Linux知识积累(4) Linux下chkconfig命令详解
Linux下chkconfig命令详解 chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. ...
- Linux下top命令详解
Linux下top命令详解 top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.top是一个动态显示过程,即可以通过用户按键来不断刷 ...
- 转载的 Linux下chkconfig命令详解
Linux下chkconfig命令详解 chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息.谨记chkconfig不是立即自动禁止或激活一个服务,它只是简单的改变了符号连接. ...
- Linux下桥接模式详解一
注册博客园已经好长时间,一直以来也没有在上面写过文章,都是随意的记录在了未知笔记上,今天开始本着分享和学习的精神想把之前总结的笔记逐步分享到博客园,和大家一起学习,一起进步吧! 2016-09-20 ...
- linux下IPTABLES配置详解 (防火墙命令)
linux下IPTABLES配置详解 -A RH-Firewall-1-INPUT -p tcp -m state --state NEW -m tcp --dport 24000 -j ACCEPT ...
随机推荐
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- extjs用iframe的问题
项目中用extjs做前提系统的界面是左边用树做目录 右边用tabpanel做内容展示点击树节点的时候 在tabpanel添加新的tab JScript code var newTab = center ...
- Delphi插件创建、调试与使用应用程序扩展
Delphi插件创建.调试与使用应用程序扩展 翻译 : MiracleZ 有没有使用过Adobe Photoshop?如果用过,你就会对插件的概念比较熟悉.对外行人来说,插件仅仅是从外部提供给应用程 ...
- TPS61040/61041 开关电源稳压器(DC-DC) ADJUST
Variable Control Voltage Output Voltage Adjust This method is accomplished by connecting a variable ...
- 任务驱动,Winform VS WEB对比式学习.NET开发系列第一篇------身份证解析(不断更新的WEB版本及Winform版本源码)
一 本系列培训随笔适用人群 1. 软件开发初学者 2. 有志于转向Web开发的Winform程序员 3. 想了解桌面应用开发的Web程序员 二 高效学习编程的办法 1 任务驱动方式学习软件开发 大部分 ...
- 【maven】maven命令 package、install、deploy 的区别
maven命令 package.install.deploy 的区别
- MyEclipse for Linux版下载
最近看到很多网友都在找MyEclipse for Linux版下载,费了很大劲也没有找到.1.建议通过代理到官方网站下载. 2.用迅雷下载.设置迅雷使用代理下载(我用的就是这种方式). MyEclip ...
- Andorid之Annotation框架初使用(一)
1. 设置Activity的布局 @EActivity(R.layout.main) public class MyActivity extends Activity {} 注: 此时在Android ...
- (转)Sql Server 快速查看表结构(表描述及字段说明)
--表描述 SELECT tbs.name 表名,ds.value 描述 FROM sys.extended_properties ds LEFT JOIN sysobjects tbs ON ds. ...
- 弹性方框模型 (Flexible Box Model) 快速入门
简介 我可以肯定,您对于页面上水平或垂直排列的样式元素已经了解得够多了.但是,CSS 还缺少适用于此任务的合适机制.了解 CSS3 弹性方框模型(简称 Flexbox) 该草案将 Flexbox 描述 ...