用map函数来完成Python并行任务的简单示例
众所周知,Python的并行处理能力很不理想。我认为如果不考虑线程和GIL的标准参数(它们大多是合法的),其原因不是因为技术不到位,而是我们的使用方法不恰当。大多数关于Python线程和多进程的教材虽然都很出色,但是内容繁琐冗长。它们的确在开篇铺陈了许多有用信息,但往往都不会涉及真正能提高日常工作的部分。
经典例子
DDG上以“Python threading tutorial (Python线程教程)”为关键字的热门搜索结果表明:几乎每篇文章中给出的例子都是相同的类+队列。
事实上,它们就是以下这段使用producer/Consumer来处理线程/多进程的代码示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
#Example.py ''' Standard Producer/Consumer Threading Pattern ''' import time import threading import Queue class Consumer(threading.Thread): def __init__( self , queue): threading.Thread.__init__( self ) self ._queue = queue def run( self ): while True : # queue.get() blocks the current thread until # an item is retrieved. msg = self ._queue.get() # Checks if the current message is # the "Poison Pill" if isinstance (msg, str ) and msg = = 'quit' : # if so, exists the loop break # "Processes" (or in our case, prints) the queue item print "I'm a thread, and I received %s!!" % msg # Always be friendly! print 'Bye byes!' def Producer(): # Queue is used to share items between # the threads. queue = Queue.Queue() # Create an instance of the worker worker = Consumer(queue) # start calls the internal run() method to # kick off the thread worker.start() # variable to keep track of when we started start_time = time.time() # While under 5 seconds.. while time.time() - start_time < 5 : # "Produce" a piece of work and stick it in # the queue for the Consumer to process queue.put( 'something at %s' % time.time()) # Sleep a bit just to avoid an absurd number of messages time.sleep( 1 ) # This the "poison pill" method of killing a thread. queue.put( 'quit' ) # wait for the thread to close down worker.join() if __name__ = = '__main__' : Producer() |
唔…….感觉有点像Java。
我现在并不想说明使用Producer / Consume来解决线程/多进程的方法是错误的——因为它肯定正确,而且在很多情况下它是最佳方法。但我不认为这是平时写代码的最佳选择。
它的问题所在(个人观点)
首先,你需要创建一个样板式的铺垫类。然后,你再创建一个队列,通过其传递对象和监管队列的两端来完成任务。(如果你想实现数据的交换或存储,通常还涉及另一个队列的参与)。
Worker越多,问题越多。
接下来,你应该会创建一个worker类的pool来提高Python的速度。下面是IBM tutorial给出的较好的方法。这也是程序员们在利用多线程检索web页面时的常用方法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#Example2.py ''' A more realistic thread pool example ''' import time import threading import Queue import urllib2 class Consumer(threading.Thread): def __init__( self , queue): threading.Thread.__init__( self ) self ._queue = queue def run( self ): while True : content = self ._queue.get() if isinstance (content, str ) and content = = 'quit' : break response = urllib2.urlopen(content) print 'Bye byes!' def Producer(): urls = [ # etc.. ] queue = Queue.Queue() worker_threads = build_worker_pool(queue, 4 ) start_time = time.time() # Add the urls to process for url in urls: queue.put(url) # Add the poison pillv for worker in worker_threads: queue.put( 'quit' ) for worker in worker_threads: worker.join() print 'Done! Time taken: {}' . format (time.time() - start_time) def build_worker_pool(queue, size): workers = [] for _ in range (size): worker = Consumer(queue) worker.start() workers.append(worker) return workers if __name__ = = '__main__' : Producer() |
它的确能运行,但是这些代码多么复杂阿!它包括了初始化方法、线程跟踪列表以及和我一样容易在死锁问题上出错的人的噩梦——大量的join语句。而这些还仅仅只是繁琐的开始!
我们目前为止都完成了什么?基本上什么都没有。上面的代码几乎一直都只是在进行传递。这是很基础的方法,很容易出错(该死,我刚才忘了在队列对象上还需要调用task_done()方法(但是我懒得修改了)),性价比很低。还好,我们还有更好的方法。
介绍:Map
Map是一个很棒的小功能,同时它也是Python并行代码快速运行的关键。给不熟悉的人讲解一下吧,map是从函数语言Lisp来的。map函数能够按序映射出另一个函数。例如
1
2
|
results = map (urllib2.urlopen, urls) |
这里调用urlopen方法来把调用结果全部按序返回并存储到一个列表里。就像:
1
2
3
|
results = [] for url in urls: results.append(urllib2.urlopen(url)) |
Map按序处理这些迭代。调用这个函数,它就会返回给我们一个按序存储着结果的简易列表。
为什么它这么厉害呢?因为只要有了合适的库,map能使并行运行得十分流畅!
有两个能够支持通过map函数来完成并行的库:一个是multiprocessing,另一个是鲜为人知但功能强大的子文件:multiprocessing.dummy。
题外话:这个是什么?你从来没听说过dummy多进程库?我也是最近才知道的。它在多进程的说明文档里面仅仅只被提到了一句。而且那一句就是大概让你知道有这么个东西的存在。我敢说,这样几近抛售的做法造成的后果是不堪设想的!
Dummy就是多进程模块的克隆文件。唯一不同的是,多进程模块使用的是进程,而dummy则使用线程(当然,它有所有Python常见的限制)。也就是说,数据由一个传递给另一个。这能够使得数据轻松的在这两个之间进行前进和回跃,特别是对于探索性程序来说十分有用,因为你不用确定框架调用到底是IO 还是CPU模式。
准备开始
要做到通过map函数来完成并行,你应该先导入装有它们的模块:
1
2
|
from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool |
再初始化:
1
|
pool = ThreadPool() |
这简单的一句就能代替我们的build_worker_pool 函数在example2.py中的所有工作。换句话说,它创建了许多有效的worker,启动它们来为接下来的工作做准备,以及把它们存储在不同的位置,方便使用。
Pool对象需要一些参数,但最重要的是:进程。它决定pool中的worker数量。如果你不填的话,它就会默认为你电脑的内核数值。
如果你在CPU模式下使用多进程pool,通常内核数越大速度就越快(还有很多其它因素)。但是,当进行线程或者处理网络绑定之类的工作时,情况会比较复杂所以应该使用pool的准确大小。
1
|
pool = ThreadPool( 4 ) # Sets the pool size to 4 |
如果你运行过多线程,多线程间的切换将会浪费许多时间,所以你最好耐心调试出最适合的任务数。
我们现在已经创建了pool对象,马上就能有简单的并行程序了,所以让我们重新写example2.py中的url opener吧!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import urllib2 from multiprocessing.dummy import Pool as ThreadPool urls = [ # etc.. ] # Make the Pool of workers pool = ThreadPool( 4 ) # Open the urls in their own threads # and return the results results = pool. map (urllib2.urlopen, urls) #close the pool and wait for the work to finish pool.close() pool.join() |
看吧!这次的代码仅用了4行就完成了所有的工作。其中3句还是简单的固定写法。调用map就能完成我们前面例子中40行的内容!为了更形象地表明两种方法的差异,我还分别给它们运行的时间计时。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# results = [] # for url in urls: # result = urllib2.urlopen(url) # results.append(result) # # ------- VERSUS ------- # # # ------- 4 Pool ------- # # pool = ThreadPool(4) # results = pool.map(urllib2.urlopen, urls) # # ------- 8 Pool ------- # # pool = ThreadPool(8) # results = pool.map(urllib2.urlopen, urls) # # ------- 13 Pool ------- # # pool = ThreadPool(13) # results = pool.map(urllib2.urlopen, urls) |
结果:
1
2
3
4
|
# Single thread: 14.4 Seconds # 4 Pool: 3.1 Seconds # 8 Pool: 1.4 Seconds # 13 Pool: 1.3 Seconds |
相当出色!并且也表明了为什么要细心调试pool的大小。在这里,只要大于9,就能使其运行速度加快。
实例2:
生成成千上万的缩略图
我们在CPU模式下来完成吧!我工作中就经常需要处理大量的图像文件夹。其任务之一就是创建缩略图。这在并行任务中已经有很成熟的方法了。
基础的单线程创建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = ( 75 , 75 ) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image. open (filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ = = '__main__' : folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840' ) os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) for image in images: create_thumbnail(Image) |
对于一个例子来说,这是有点难,但本质上,这就是向程序传递一个文件夹,然后将其中的所有图片抓取出来,并最终在它们各自的目录下创建和储存缩略图。
我的电脑处理大约6000张图片用了27.9秒。
如果我们用并行调用map来代替for循环的话:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = ( 75 , 75 ) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image. open (filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ = = '__main__' : folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840' ) os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) pool = Pool() pool. map (create_thumbnail,images) pool.close() pool.join() |
5.6秒!
对于只改变了几行代码而言,这是大大地提升了运行速度。这个方法还能更快,只要你将cpu 和 io的任务分别用它们的进程和线程来运行——但也常造成死锁。总之,综合考虑到 map这个实用的功能,以及人为线程管理的缺失,我觉得这是一个美观,可靠还容易debug的方法。
好了,文章结束了。一行完成并行任务。
用map函数来完成Python并行任务的简单示例的更多相关文章
- C#调用Python脚本的简单示例
C#调用Python脚本的简单示例 分类:Python (2311) (0) 举报 收藏 IronPython是一种在 .NET及 Mono上的 Python实现,由微软的 Jim Huguni ...
- python信号signal简单示例
进程间通信之类的,用得着, 可以自定义接到信息之后的动作. file1.py #!/usr/bin/env python # -*- coding: utf-8 -*- import os impor ...
- python selenium 最简单示例
使用 pip 安装 selenium 下载 chromedriver,添加在PATH中 # -*- coding: utf-8 -*- from selenium import webdriver ...
- Python基础总结之认识lambda函数、map函数、filter() 函数。第十二天开始(新手可相互督促)
今天周日,白天在学习,晚上更新一些笔记,希望对大家能更好的理解.学习python~ lambda函数,也就是大家说的匿名函数.它没有具体的名称,也可以叫做一句话函数,我觉得也不过分,大家看下代码,来体 ...
- 实现python中的map函数
假设Python没有提供map()函数,自行编写my_map()函数实现与map()相同的功能.以下代码在Python 2.7.8中实现. 实现代码: def my_map(fun,num): i = ...
- python map函数
map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 例如,对于li ...
- Python中的map()函数和reduce()函数的用法
Python中的map()函数和reduce()函数的用法 这篇文章主要介绍了Python中的map()函数和reduce()函数的用法,代码基于Python2.x版本,需要的朋友可以参考下 Py ...
- python的map()函数
map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 例如,对于list [1, 2 ...
- Python中map()函数浅析
MapReduce的设计灵感来自于函数式编程,这里不打算提MapReduce,就拿python中的map()函数来学习一下. 文档中的介绍在这里: map(function, iterable, .. ...
随机推荐
- 解决EditPlus的默认编码方式有关问题(转)
http://blog.csdn.net/hzhsan/article/details/7911660 最近在使用英文版的Editplus写代码的时候,发现中文字符在调试过程中都变成了乱码, 发现是E ...
- Spring整合Quartz定时器
1.添加jar #此处省略spring核心jar包 <dependency> <groupId>org.quartz-scheduler</groupId> < ...
- 1.远程仓库的使用(github)
1.登录Github,新建一个仓库(远程仓库) (1)使用Github账号密码登录 (2)点击+旁边的小三角,选择new repository--输入repository name--点击create ...
- Python2 和 Python3 的区别(待完善)
1.宏观上 python2 :源码不标准,混乱,重复代码太多 python3 :统一 标准,去除重复代码. 2. print python2 :括号可有可无 print(a) 或 print ap ...
- Unit02: CSS 概述 、 CSS 语法 、 CSS 选择器 、 CSS声明
Unit02: CSS 概述 . CSS 语法 . CSS 选择器 . CSS声明 my.css p { color: yellow; } demo1.html <!DOCTYPE html&g ...
- (转)Inno Setup入门(二十一)——Inno Setup类参考(7)
本文转载自:http://blog.csdn.net/yushanddddfenghailin/article/details/17268435 复选框 复选框(CheckBox)用于多个并不互斥的几 ...
- Hibernate学习10——Hibernate 查询方式
本章主要是以查询Student的例子: Student.java: package com.cy.model; public class Student { private int id; priva ...
- 关于git rebase的相关讲解
http://gitbook.liuhui998.com/4_2.html 一.基本 git rebase用于把一个分支的修改合并到当前分支. 假设你现在基于远程分支"origin" ...
- Mac brew安装MongoDB
brew简介安装 brew 又叫Homebrew,是Mac OSX上的软件包管理工具,能在Mac中方便的安装软件或者卸载软件, 只需要一个命令, 非常方便 brew类似ubuntu系统下的apt-ge ...
- json-lib使用笔记
今天再来记录一款生成JSON的工具——json-lib,它比较与我之前使用的FastJSON来说,使用都是很简单的,但是要使用json-lib要需要的jar包可真不少,所需要的依赖jar有八九个之多, ...