题意:在一条不满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
 
设dp[i]表示到达i点的概率,则 初始值 dp[1]=1.
很容易想到转移方程: dp[i]=p*dp[i-1]+(1-p)*dp[i-2];
但是由于坐标的范围很大,直接这样求是不行的,而且当中的某些点还存在地雷。
 
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
`
`
x[N-1]+1~x[N].
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 
对于每一段的概率的求法可以通过矩阵乘法快速求出来。

 /*
POJ 3744 C++ 0ms 184K
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std; struct Matrix
{
double mat[][];
};
Matrix mul(Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
ret.mat[i][j]=;
for(int k=;k<;k++)
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
for(int i=;i<;i++)ret.mat[i][i]=;
Matrix temp=a;
while(n)
{
if(n&)ret=mul(ret,temp);
temp=mul(temp,temp);
n>>=;
}
return ret;
} int x[];
int main()
{
int n;
double p;
while(scanf("%d%lf",&n,&p)!=EOF)//POJ上G++要改为cin输入
{
for(int i=;i<n;i++) scanf("%d",&x[i]);
sort(x,x+n);
double ans=;
Matrix tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Matrix temp; temp=pow_M(tt,x[]-);
ans*=(-temp.mat[][]); for(int i=;i<n;i++){
if(x[i]==x[i-])continue;
temp=pow_M(tt,x[i]-x[i-]-);
ans*=(-temp.mat[][]);
}
printf("%.7lf\n",ans);//POJ上G++要改为%.7f
}
return ;
}

矩阵快速幂+概率DP poj 3744的更多相关文章

  1. poj 3744 矩阵快速幂+概率dp

    题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...

  2. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  3. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  4. POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )

    题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...

  5. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  6. 【矩阵快速幂优化DP】【校内测试】

    实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻. 构建矩阵什么的 ...

  7. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  8. HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  9. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

随机推荐

  1. 假期学习【三】HDFS操作及spark的安装/使用

    1.安装 Hadoop 和 Spark 进入 Linux 系统,参照本教程官网“实验指南”栏目的“Hadoop 的安装和使用”,完 成 Hadoop 伪分布式模式的安装.完成 Hadoop 的安装以后 ...

  2. PIE-SDK For C++栅格数据的金字塔创建

    1.功能简介 金字塔可用于改善性能,可以加快栅格数据的显示速度.随着放大操作的进行,各个更精细的分辨率等级将逐渐得到绘制;但性能将保持不变:目前PIE SDK支持栅格数据的金字塔创建,下面对栅格数据格 ...

  3. C++——动态内存分配3

    动态创建多维数组  new 类型名T[下标表达式1][下标表达式2]…: 如果内存申请成功,new运算返回一个指向新分配内存首地址的指针,是一个T类型的数组,数组元素的个数为除最左边一维外各维下标表达 ...

  4. DVR

    DVR,全称为Digital Video Recorder(硬盘录像机),即数字视频录像机,相对于传统的模拟视频录像机,采用硬盘录像,故常常被称为硬盘录像机.它是一套进行图像计算存储处理的计算机系统, ...

  5. nodemon:无法将“nodemon”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

    主要问题还是你的终端(也就是你的nodemon命令执行的地方没有这个环境) 解决方法:设置全局的nodemon,在终端执行 npm install -g nodemon

  6. TCP/IP详解,卷1:协议--第8章 Traceroute程序

    引言 由Van Jacobson编写的Tr a c e r o u t e程序是一个能更深入探索T C P / I P协议的方便可用的工具. 尽管不能保证从源端发往目的端的两份连续的 I P数据报具有 ...

  7. 3ds Max File Format (Part 1: The outer file format; OLE2)

    The 3ds Max file format, not too much documentation to be found about it. There are some hints here ...

  8. c#中的位运算

    &与  全为1才是1 |或  全为0才是0 !非  两边相同时为1,不同时为0 ~取反  0变1,1变0,包括符号位 >>右移 溢出舍掉,正数补0,负数补1,移动n位:原数 / 2 ...

  9. 一次 utf-8 bom引起的问题

    同事代码新增加了功能,推到服务器上,意外导致登录失败,回退到之前的版本上,可以正常使用. 这次只上传了 route.php 文件,系统登录失败. 随后使用kdiff3对比了两版本的route.php文 ...

  10. mysql查询速度慢的分析和解决

    一.定位执行慢的sql,如2秒内没执行完的抽取出来 show engines;查看慢查询时间show variables like 'slow%';查看设置多久是慢查询show variables l ...