• 题目传送门

  • 定义有特殊边相邻的格子颜色为黑,否则为白

  • 可以看出,题目给出的限制条件的本质是如果两个小方块所在的格子 \(x\) 和 \(y\) 为两个相邻的黑格,那么 \(x\) 和 \(y\) 之间必然有一者满足其上下左右的所有白格内都没有小方块

  • 即对于这样的 \(x\) 和 \(y\) ,需要以下三个条件至少满足一个

  • (1)用 \(\min(w_x,w_y)\) 的代价删除 \(x\) 和 \(y\) 上的其中一个小方块

  • (2)把与 \(x\) 相邻的白格内的小方块全部删掉

  • (3)把与 \(y\) 相邻的白格内的小方块全部删掉

  • 故考虑对于所有的白格 \(i\) ,拆成两个点 \(i_0\) 和 \(i_1\) ,并连边 \(<i_0,i_1,w_i>\)

  • 对于所有的黑格组(相邻且之间有特殊边的两个黑格)\((x,y)\) ,也建立两个点,第一个点向第二个点连容量为 \(\min(w_x,w_y)\) 的边

  • 这时候我们就有一个比较明显的最小割模型了

  • 即对于需要「至少满足一个」的条件集合进行串联,需要「全部满足」的条件集合进行并联

  • 具体地,如下图:

  • 其中 \(x_1,x_2,x_3\) 表示与 \(x\) 相邻的白格, \(y_1,y_2,y_3\) 同理

  • 以下设上图中 \(x_1,x_2,x_3\) 对应的三条边在第一层, \(\min(w_x,w_y)\) 对应的边在第二层, \(y_1,y_2,y_3\) 对应的三条边在第三层

  • 至于 \(\min(w_x,w_y)\) 的边为什么一定要放在中间,后面会说

  • 我们会发现一个问题:一个白格会属于 \(3\) 个黑格,直接建图会导致不同的黑格组之间互相影响

  • 所以正确的建图方式是:设 \(x\) 在 \(y\) 左边,则要判断黑哥所在行号的奇偶性

  • 若在奇行则 \(S\) 到 \(T\) 的路径上依次限制与 \(x\) 相邻的白格 \(\rightarrow\) 黑格组 \((x,y)\) 本身 \(\rightarrow\) 与 \(y\) 相邻的白格,否则反过来

  • 考虑这样做的正确性:易得这么建图可以使得对于任意一个白格对应的限制边只在一层(第一层或第三层)中出现

  • 如果一个白格 \(i\) 同时属于两个黑格组且位于第一层,且边 \(<i_0,i_1>\) 没有被割掉,那么显然这两个黑格组的第一层限制都必然不会被满足了,这时即使不同的黑格组之间互相影响也不会对最终的答案造成影响。第三层同理

  • 而这时候如果 \(\min(w_x,w_y)\) 不在第二层而在第一层,那么假设这时候 \(i\) 位于第二层,有两个黑格组 \(X\) 和 \(Y\) ,\(X\) 只割掉了第三层,\(Y\) 只割掉了第一层,那么由于保留了边 \(<i_0,i_1>\) 之后 \(X\) 和 \(Y\) 的第二层能互通,故这时源点到汇点有一条 \(S\rightarrow X_1\rightarrow X_2\rightarrow Y_2\rightarrow Y_3\rightarrow T\) 的路径,这时就不合法了

Code

#include <bits/stdc++.h>

template <class T>
inline void read(T &res)
{
res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
if (bo) res = ~res + 1;
} template <class T>
inline T Min(const T &a, const T &b) {return a < b ? a : b;} const int N = 1e5 + 10, M = 3e5 + 5, L = 4e6 + 5, INF = 0x3f3f3f3f; int n, X[N], Y[N], w[N], ecnt = 1, nxt[L], adj[M], go[L], cap[L], len, que[M],
lev[M], cur[M], S, T, ans;
std::map<int, int> is[N]; int which(int x, int op) {return (x << 1) + op;} void add_edge(int u, int v, int w)
{
nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v; cap[ecnt] = w;
nxt[++ecnt] = adj[v]; adj[v] = ecnt; go[ecnt] = u; cap[ecnt] = 0;
} bool bfs()
{
for (int i = S; i <= T; i++) lev[i] = -1, cur[i] = adj[i];
lev[que[len = 1] = S] = 0;
for (int i = 1; i <= len; i++)
{
int u = que[i];
for (int e = adj[u], v = go[e]; e; e = nxt[e], v = go[e])
if (cap[e] && lev[v] == -1)
{
lev[que[++len] = v] = lev[u] + 1;
if (v == T) return 1;
}
}
return 0;
} int dinic(int u, int flow)
{
if (u == T) return flow;
int res = 0, delta;
for (int &e = cur[u], v = go[e]; e; e = nxt[e], v = go[e])
if (cap[e] && lev[u] < lev[v])
{
delta = dinic(v, Min(cap[e], flow - res));
if (delta)
{
cap[e] -= delta; cap[e ^ 1] += delta;
res += delta; if (res == flow) break;
}
}
if (res < flow) lev[u] = -1;
return res;
} void add(int i, int j, int op)
{
if (op) add_edge(S, which(j, 0), INF), add_edge(which(j, 1), which(i, 0), INF);
else add_edge(which(i, 1), which(j, 0), INF), add_edge(which(j, 1), T, INF);
} int main()
{
read(n); read(n); read(n);
for (int i = 1; i <= n; i++)
read(X[i]), read(Y[i]), read(w[i]), is[X[i]][Y[i]] = i;
S = 1; T = n + 1 << 1;
for (int i = 1; i <= n; i++)
{
if (X[i] % 4 != (Y[i] + 1) % 2 * 2 + 1 && X[i] % 4 != Y[i] % 2 * 2)
add_edge(which(i, 0), which(i, 1), w[i]);
if (X[i] % 4 != (Y[i] + 1) % 2 * 2 + 1) continue;
int x = X[i], y = Y[i], j;
if (!(j = is[x + 1][y])) continue;
add_edge(which(i, 0), which(i, 1), Min(w[i], w[j]));
if (j = is[x - 1][y]) add(i, j, y & 1);
if (j = is[x][y - 1]) add(i, j, y & 1);
if (j = is[x][y + 1]) add(i, j, y & 1);
if (j = is[x + 2][y]) add(i, j, !(y & 1));
if (j = is[x + 1][y - 1]) add(i, j, !(y & 1));
if (j = is[x + 1][y + 1]) add(i, j, !(y & 1));
}
while (bfs()) ans += dinic(S, INF);
return std::cout << ans << std::endl, 0;
}

[LOJ#3022][网络流]「CQOI2017」老 C 的方块的更多相关文章

  1. @loj - 3022@ 「CQOI2017」老 C 的方块

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 老 C 是个程序员. 作为一个懒惰的程序员,老 C 经常在电脑上 ...

  2. 【LOJ】#3020. 「CQOI2017」小 Q 的表格

    #3020. 「CQOI2017」小 Q 的表格 这个的话求出来\(g = gcd(a,b)\) 会修改所有gcd为g的位置 我们要求\((g,g)\)这个位置的数一定是\(g^{2}\)的倍数 之后 ...

  3. [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC

    [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...

  4. 【LOJ】#2210. 「HNOI2014」江南乐

    LOJ#2210. 「HNOI2014」江南乐 感觉是要推sg函数 发现\(\lfloor \frac{N}{i}\rfloor\)只有\(O(\sqrt{N})\)种取值 考虑把这些取值都拿出来,能 ...

  5. 【LOJ】#3098. 「SNOI2019」纸牌

    LOJ#3098. 「SNOI2019」纸牌 显然选三个以上的连续牌可以把他们拆分成三个三张相等的 于是可以压\((j,k)\)为有\(j\)个连续两个的,有\(k\)个连续一个的 如果当前有\(i\ ...

  6. 【LOJ】#3103. 「JSOI2019」节日庆典

    LOJ#3103. 「JSOI2019」节日庆典 能当最小位置的值一定是一个最小后缀,而有用的最小后缀不超过\(\log n\)个 为什么不超过\(\log n\)个,看了一下zsy的博客.. 假如\ ...

  7. 【LOJ】#3102. 「JSOI2019」神经网络

    LOJ#3102. 「JSOI2019」神经网络 首先我们容易发现就是把树拆成若干条链,然后要求这些链排在一个环上,同一棵树的链不相邻 把树拆成链可以用一个简单(但是需要复杂的分类讨论)的树背包实现 ...

  8. 【LOJ】#3101. 「JSOI2019」精准预测

    LOJ#3101. 「JSOI2019」精准预测 设0是生,1是死,按2-sat连边那么第一种情况是\((t,x,1) \rightarrow (t + 1,y,1)\),\((t + 1,y, 0) ...

  9. 【LOJ】#3097. 「SNOI2019」通信

    LOJ#3097. 「SNOI2019」通信 费用流,有点玄妙 显然按照最小路径覆盖那题的建图思路,把一个点拆成两种点,一种是从这个点出去,标成\(x_{i}\),一种是输入到这个点,使得两条路径合成 ...

随机推荐

  1. vue 改变数据DOM不更新,获取不到DOM的解决方法

    1.获取不到DOM的解决方案(使用$nextTick) 定义:在下次 DOM 更新循环结束之后执行延迟回调.在修改数据之后立即使用这个方法,获取更新后的 DOM. 理解:nextTick(),是将回调 ...

  2. 【转】AUC(Area Under roc Curve )计算及其与ROC的关系

    让我们从头说起,首先AUC是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域中常用的 ...

  3. dotnet 控制台 Hangfire 后台定时任务

    本文告诉大家如何在 dotnet core 的控制台通过 Hangfire 开启后台定时任务 首先需要安装 HangFire 这个 Nuget 库,通过这个库可以用来做定时任务,虽然很多时候都是在 A ...

  4. centos7 创建sftp

    sftp是Secure File Transfer Protocol的缩写,安全文件传送协议.可以为传输文件提供一种安全的网络的加密方法.sftp 与 ftp 有着几乎一样的语法和功能.SFTP 为  ...

  5. linux 搭建jenkins

    一.什么是持续集成? (1)Continuous integration(CI) 持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通常每个成员至少集成一次,也就意味着每天可能会发生多次集 ...

  6. remote api

    iperf -B 99.99.3.1 -c 192.168.42.242 -p 10002 -f m -i 1 -P 1 -w 1M -u -b 1M -t 20 iperf -B 192.168.4 ...

  7. Qt串行化的输入和输出(使用QDataStream读写QByteArray,对QIODevice直接起作用)

    参考https://lug.ustc.edu.cn/sites/qtguide/ 今天看了一个介绍Qt串行化的介绍,感觉很受益,就记录了下来. 串行化(Serialization)是计算机科学中的一个 ...

  8. springboot 动态修改定时任务

    1.静态定时 1)启动类加上注解@EnableScheduling @EnableAsync @EnableScheduling @SpringBootApplication @MapperScan( ...

  9. Java之String类常用API

    目录 Java之String类常用API char chatAt(int index) int length() char[] toCharArray() String(char value[]) S ...

  10. 009 Ceph RBD增量备份与恢复

    一.RBD的导入导出介绍 Ceph存储可以利用快照做数据恢复,但是快照依赖于底层的存储系统没有被破坏 可以利用rbd的导入导出功能将快照导出备份 RBD导出功能可以基于快照实现增量导出 二.RBD导出 ...