Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch – the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves’ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar’s tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree’s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree’s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

题解

线段树的合并,子树的逆序对与父亲交换没有关系,所以贪心合并即可。

 #include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define N 400007
#define M 4000007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,sz,seg;
ll ans,cnt1,cnt2;
int val[N],l[N],r[N],rt[N];
int siz[M],ls[M],rs[M]; void readtree(int x)
{
val[x]=read();
if(!val[x])
{
l[x]=++sz;
readtree(l[x]);
r[x]=++sz;
readtree(r[x]);
}
}
void build(int &k,int l,int r,int val)
{
if(!k)k=++seg;
if(l==r){siz[k]=;return;}
int mid=(l+r)>>;
if(val<=mid)build(ls[k],l,mid,val);
else build(rs[k],mid+,r,val);
siz[k]=siz[ls[k]]+siz[rs[k]];
}
int merge(int x,int y)
{
if(!x)return y;
if(!y)return x;
cnt1+=(ll)siz[rs[x]]*siz[ls[y]];
cnt2+=(ll)siz[ls[x]]*siz[rs[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
siz[x]=siz[ls[x]]+siz[rs[x]];
return x;
}
void solve(int x)
{
if(!x)return;
solve(l[x]);solve(r[x]);
if(!val[x])
{
cnt1=cnt2=;
rt[x]=merge(rt[l[x]],rt[r[x]]);
ans+=min(cnt1,cnt2);
}
}
int main()
{
n=read();++sz;
readtree();
for(int i=;i<=sz;i++)
if(val[i])build(rt[i],,n,val[i]);
solve();
printf("%lld",ans);
}

bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并的更多相关文章

  1. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  2. BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

    原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ2212 题意概括 给一棵n(1≤n≤200000个叶子的二叉树, ...

  3. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

  4. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  5. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  6. BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

    BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...

  7. [bzoj2212]Tree Rotations(线段树合并)

    解题关键:线段树合并模板题.线段树合并的题目一般都是权值线段树,因为结构相同,求逆序对时,遍历权值线段树的过程就是遍历所有mid的过程,所有能求出所有逆序对. #include<iostream ...

  8. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  9. [POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

    题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为 ...

随机推荐

  1. CPU中的主要的寄存器

    寄存器 名为寄存器的存储电路. 8种16位寄存器 AX accumulator 累加寄存器 CX counter 计数寄存器 DX data 数据寄存器 BX base 基址寄存器 SP stack ...

  2. EF实体模型的更新

    摘要 解决前期数据库优先添加的实体,然后数据库表结构发生变化后,导致代码操作EF插入更新数据失败问题 EF 数据库更新模型 相比大家在使用实体操作数据库的时候,都是采取数据库优先,手动添加实体模型.但 ...

  3. VS 断点不会命中的情况

    总结下遇到的几次断点无法命中的情况: 1.手误设置为release模式 如果是release模式的情况下,断点跳转命中情况是无法预知的,所以请修改成debug 2.与源文件不一致 这个情况是最常见的, ...

  4. PAT甲级——1072 Gas Station

    A gas station has to be built at such a location that the minimum distance between the station and a ...

  5. mysql内建命令快速手记 — 让手指跟上思考的速度(一)

    在微信公众号上看到一篇文章说的很好,意思是说,大牛在尝试各种方案的时候可能并没有超神的预测和筛选能力 只是你通常测试一种情况时,大神已经测试了好几种方案了,讲的是"为什么大多数程序员不喜欢写 ...

  6. <数据链接>常用网站收集

    1.互联网数据指数 百度指数:http://index.baidu.com/ 阿里指数:http://index.1688.com/ TBI腾讯浏览指数:http://tbi.tencent.com/ ...

  7. adb命令总结

  8. Open CASCADE Technology: IGES Support

    2015/6/4 Open CASCADE Technology: IGES Support http://www.opencascade.org/doc/occt­6.7.0/overview/ht ...

  9. mybatis配合pagehelper分页助手查询

    Maven: 参考: springBoot2.x整合pagehelper5.1.2:https://blog.csdn.net/Carlson_Chis/article/details/8563748 ...

  10. Windows API 第 10篇 SearchTreeForFile

    函数原型:BOOL SearchTreeForFile(  PSTR RootPath,      //系统查找的起始路径,   PSTR InputPathName,                 ...