bzoj 4386: [POI2015]Wycieczki

这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了好长时间……

先说一下超级汇点的计数吧,先说结论:

1.将所有点(此题中只有一级点)向一个超级汇点0连边,将矩阵乘n次,相应的f[i][j]即为从i到j的走n步方案数,f[i][0]为i到0走n步的方案数,若在给他乘一个ans矩阵(ans在前),则f[0][0]-n(点数)为所有长度等于n(指数)的路径的方案数。ans矩阵为0向所有其他点连边。

2.若在1中,将0想自己连边,则每次相乘都会积累,最终得出的即为所有长度小于等于n的路径方案数。

具体可以这样理解:

ans矩阵相当于从超级汇点出发走一步,每乘一个base矩阵,相当于走一步,乘了n次后,相当于走n步,但是还要再乘一个base,相当于各点回到0,而计数器中仍保留着从0走出的方案数,此时f[0][0]-点数即为答案。(这种问题自己手模一下会更容易理解吧)。

然后是题解:

边权只有1,2,3三种,考虑拆点(在‘迷路’中也用到了同样的方法),将一个点分为三级,$get(int po,int w){return (po-1)*3+w;}$,将每个点的第一级向第二级连边,第二级向第三级连边,对于一条a->b,长度为w的边,从a的第w级向b的第一级连长度为1的边。

代码实现:

     for(int i=;i<=m;i++)
{
a=read(),b=read(),c=read();
cs.m[get(a,c)][get(b,)]++;
}
for(int i=;i<=n;i++)
{
cs.m[get(i,)][get(i,)]++;
cs.m[get(i,)][get(i,)]++;
}

这样就得到了一个初始矩阵,构造出ans矩阵,显然可以二分枚举长度解决,但是复杂度比较高会T,考虑倍增,提前预处理出初始矩阵乘$2^i$后的矩阵,像LCA那样搞就可以了。

然而这道题还有几个坑点:

方案数乘的时候会爆longlong(如果你打的恶心点连__int128都会爆),可以加判断,个人感觉比较麻烦,于是就用了double,还会爆?丝毫不慌还有long double。

然后就T了,用lemon测了一下,跑了一百多秒,好在都跑对了,其实这不是long double的锅,和我自带的大常数关系也不大,在预处理倍增数组时我固定给他求到了65,导致时间比较长,其实可以记录一下:

 for(int i=;i<=;i++,imax++){F[i]=F[i-]*F[i-];if((ans*F[i]).count()>k)break;}

然后就A了,跑得还挺快。其实我还是搞不懂为啥会差这么多,固定求到65复杂度也是$n^3log_n$啊……

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N n*3
#define LD long double
#define LL long long
using namespace std;
int n,m;LL k;
struct jz
{
LD m[121][121];
LD count() {return m[0][0]-n;}
}cs,ans,F[70];
jz operator * (jz &a,jz &b)
{
jz ans;
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
ans.m[i][j]=0;
for(int i=0;i<=N;i++)
for(int j=0;j<=N;j++)
for(int k=0;k<=N;k++)
ans.m[i][j]+=a.m[i][k]*b.m[k][j];
return ans;
}
inline int get(const register int po,const register int w){return (po-1)*3+w;}
inline LL read()
{
LL s=0;char a=getchar();
while(a<'0'||a>'9')a=getchar();
while(a>='0'&&a<='9'){s=s*10+a-'0';a=getchar();}
return s;
}
signed main()
{
// freopen("10.in","r",stdin); n=read(),m=read(),k=read();
int a,b,c;
for(int i=1;i<=m;i++)
{
a=read(),b=read(),c=read();
cs.m[get(a,c)][get(b,1)]++;
}
for(int i=1;i<=n;i++)
{
cs.m[get(i,1)][get(i,2)]++;
cs.m[get(i,2)][get(i,3)]++;
}
LL imax=1;
cs.m[0][0]=1;
for(int i=1;i<=n;i++)cs.m[get(i,1)][0]++;
for(int i=1;i<=n;i++)ans.m[0][get(i,1)]=1;
F[0]=cs;
for(int i=1;i<=65;i++,imax++){F[i]=F[i-1]*F[i-1];if((ans*F[i]).count()>k)break;}
if((ans*F[imax]).count()<k){cout<<-1<<endl;return 0;}
LL num=0;
for(int i=imax;i>=0;i--)
{
jz tm=ans*F[i];
if(tm.count()<k){num+=1ll<<i;ans=ans*F[i];}
}
cout<<num<<endl;
}

bzoj 4386: [POI2015]Wycieczki的更多相关文章

  1. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  2. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  3. BZOJ 4384: [POI2015]Trzy wieże

    4384: [POI2015]Trzy wieże Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 217  Solved: 61[Submit][St ...

  4. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  5. BZOJ 3747 POI2015 Kinoman 段树

    标题效果:有m点,每个点都有一个权值.现在我们有这个m为点的长度n该序列,寻求区间,它仅出现一次在正确的点区间内值和最大 想了很久,甚至神标题,奔说是水的问题--我醉了 枚举左点 对于每个请求留点右键 ...

  6. BZOJ 4380 [POI2015]Myjnie | DP

    链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...

  7. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  8. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  9. BZOJ 3747 POI2015 Kinoman

    因为上午没有准备够题目,结果发现写完这道题没题可写了QAQ 又因为这道题范围是100w,我写了发线段树,以为要T,上午就花了一个小时拼命卡常数 结果下午一交居然过了QAQ 我们考虑枚举L,求最大R使得 ...

随机推荐

  1. 【Django入坑之路】Models操作

    1:字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bigint自增列,必须填入参数 pr ...

  2. day37 01-上次课内容回顾

  3. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  4. Linux系统下实现远程连接MySQL数据库的方法教程

    1.在服务器端开启远程访问首先进入mysql数据库,然后输入下面两个命令: grant all privileges on *.* to 'root'@'%' identified by 'passw ...

  5. spring源码学习之bean的加载(一)

    对XML文件的解析基本上已经大致的走了一遍,虽然没有能吸收多少,但是脑子中总是有些印象的,接下来看下spring中的bean的加载,这个比xml解析复杂的多.这个加载,在我们使用的时候基本上是:Bea ...

  6. 利用 awk 将当前的链接按端口汇总倒排序

    写了一行命令,利用 awk 将当前的链接按端口汇总倒排序  :) netstat -ano | awk /tcp.*:1[15].*:[1-5]/'{print $4}' | awk -F ':' ' ...

  7. Freckles (最小生成树)

    #include<iostream> #include<cstring> #include<stdio.h> #include<queue> #incl ...

  8. 学习JDK1.8集合源码之--Vector

    1. Vector简介 Vector是JDK1.0版本就推出的一个类,和ArrayList一样,继承自AbstractList,实现了List.RandomAccess.Cloneable.java. ...

  9. Docker.[3].镜像操作.

    Docker.[3].镜像操作. 熟悉基础指令: 查看本地镜像 docker images 查看本地镜像 docker image list (和上面显示的结果一样.) 删除本地镜像 docker r ...

  10. 使用mpvue开发github小程序总结

    前言 最近有点闲,想起关注已久的mpvue写小程序,所以稍微肝了半个多月写了个github版的微信小程序,已上线.现在总结一下遇到的坑. 扫码体验. 项目地址.https://github.com/c ...