大数据技术之HA 高可用
HDFS HA高可用
1.1 HA概述
1)所谓HA(High Available),即高可用(7*24小时不中断服务)。
2)实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
4)NameNode主要在以下两个方面影响HDFS集群
NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。
1.2 HDFS-HA工作机制
通过双NameNode消除单点故障
1.2.1 HDFS-HA工作要点
1. 元数据管理方式需要改变
内存中各自保存一份元数据;
Edits日志只有Active状态的NameNode节点可以做写操作;
两个NameNode都可以读取Edits;
共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
2. 需要一个状态管理功能模块
实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。
3. 必须保证两个NameNode之间能够ssh无密码登录
4. 隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务
1.2.2 HDFS-HA自动故障转移工作机制
前面学习了使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode,下面学习如何配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程,如图3-20所示。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
1)故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
2)现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
1)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
2)ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
3)基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。
图3-20 HDFS-HA故障转移机制
1.3 HDFS-HA集群配置
1.3.1 环境准备
1. 修改IP
2. 修改主机名及主机名和IP地址的映射
3. 关闭防火墙
4. ssh免密登录
5. 安装JDK,配置环境变量等
1.3.2 规划集群
表3-1
hadoop102 |
hadoop103 |
hadoop104 |
NameNode |
NameNode |
|
JournalNode |
JournalNode |
JournalNode |
DataNode |
DataNode |
DataNode |
ZK |
ZK |
ZK |
ResourceManager |
||
NodeManager |
NodeManager |
NodeManager |
1.3.3 配置Zookeeper集群
1. 集群规划
在hadoop102、hadoop103和hadoop104三个节点上部署Zookeeper。
2. 解压安装
(1)解压Zookeeper安装包到/opt/module/目录下
[atguigu@hadoop102 software]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/
(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData
mkdir -p zkData
(3)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg
mv zoo_sample.cfg zoo.cfg
3. 配置zoo.cfg文件
(1)具体配置
dataDir=/opt/module/zookeeper-3.4.10/zkData
增加如下配置
#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888
(2)配置参数解读
Server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的IP地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
4. 集群操作
(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件
touch myid
添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码
(2)编辑myid文件
vi myid
在文件中添加与server对应的编号:如2
(3)拷贝配置好的zookeeper到其他机器上
scp -r zookeeper-3.4.10/ root@hadoop103.atguigu.com:/opt/app/
scp -r zookeeper-3.4.10/ root@hadoop104.atguigu.com:/opt/app/
并分别修改myid文件中内容为3、4
(4)分别启动zookeeper
[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh start
[root@hadoop104 zookeeper-3.4.10]# bin/zkServer.sh start
(5)查看状态
[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[root@hadoop104 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
1.3.4 配置HDFS-HA集群
1. 官方地址:http://hadoop.apache.org/
2. 在opt目录下创建一个ha文件夹
mkdir ha
3. 将/opt/app/下的 hadoop-2.7.2拷贝到/opt/ha目录下
cp -r hadoop-2.7.2/ /opt/ha/
4. 配置hadoop-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144 |
5. 配置core-site.xml
<configuration> <!-- 把两个NameNode)的地址组装成一个集群mycluster --> <property> <name>fs.defaultFS</name> <value>hdfs://mycluster</value> </property> <!-- 指定hadoop运行时产生文件的存储目录 --> <property> <name>hadoop.tmp.dir</name> <value>/opt/ha/hadoop-2.7.2/data/tmp</value> </property> </configuration> |
6. 配置hdfs-site.xml
<configuration> <!-- 完全分布式集群名称 --> <property> <name>dfs.nameservices</name> <value>mycluster</value> </property> <!-- 集群中NameNode节点都有哪些 --> <property> <name>dfs.ha.namenodes.mycluster</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.mycluster.nn1</name> <value>hadoop102:9000</value> </property> <!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.mycluster.nn2</name> <value>hadoop103:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.mycluster.nn1</name> <value>hadoop102:50070</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.mycluster.nn2</name> <value>hadoop103:50070</value> </property> <!-- 指定NameNode元数据在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value> </property> <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 --> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <!-- 使用隔离机制时需要ssh无秘钥登录--> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/atguigu/.ssh/id_rsa</value> </property> <!-- 声明journalnode服务器存储目录--> <property> <name>dfs.journalnode.edits.dir</name> <value>/opt/ha/hadoop-2.7.2/data/jn</value> </property> <!-- 关闭权限检查--> <property> <name>dfs.permissions.enable</name> <value>false</value> </property> <!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式--> <property> <name>dfs.client.failover.proxy.provider.mycluster</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> </configuration> |
7. 拷贝配置好的hadoop环境到其他节点
1.3.5 启动HDFS-HA集群
1. 在各个JournalNode节点上,输入以下命令启动journalnode服务
sbin/hadoop-daemon.sh start journalnode
2. 在[nn1]上,对其进行格式化,并启动
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
3. 在[nn2]上,同步nn1的元数据信息
bin/hdfs namenode -bootstrapStandby
4. 启动[nn2]
sbin/hadoop-daemon.sh start namenode
5. 查看web页面显示,如图3-21,3-22所示
图3-21 hadoop102(standby)
图3-22 hadoop103(standby)
6. 在[nn1]上,启动所有datanode
sbin/hadoop-daemons.sh start datanode
7. 将[nn1]切换为Active
bin/hdfs haadmin -transitionToActive nn1
- 查看是否Active
bin/hdfs haadmin -getServiceState nn1
1.3.6 配置HDFS-HA自动故障转移
1. 具体配置
(1)在hdfs-site.xml中增加
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
(2)在core-site.xml文件中增加
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>
2. 启动
(1)关闭所有HDFS服务:
sbin/stop-dfs.sh
(2)启动Zookeeper集群:
bin/zkServer.sh start
(3)初始化HA在Zookeeper中状态:
bin/hdfs zkfc -formatZK
(4)启动HDFS服务:
sbin/start-dfs.sh
(5)在各个NameNode节点上启动DFSZK Failover Controller,先在哪台机器启动,哪个机器的NameNode就是Active NameNode
sbin/hadoop-daemin.sh start zkfc
3. 验证
(1)将Active NameNode进程kill
kill -9 namenode的进程id
(2)将Active NameNode机器断开网络
service network stop
1.4 YARN-HA配置
1.4.1 YARN-HA工作机制
1. 官方文档:
http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
2. YARN-HA工作机制,如图3-23所示
图3-22 YARN-HA工作机制
1.4.2 配置YARN-HA集群
1. 环境准备
(1)修改IP
(2)修改主机名及主机名和IP地址的映射
(3)关闭防火墙
(4)ssh免密登录
(5)安装JDK,配置环境变量等
(6)配置Zookeeper集群
2. 规划集群
表3-2
hadoop102 |
hadoop103 |
hadoop104 |
NameNode |
NameNode |
|
JournalNode |
JournalNode |
JournalNode |
DataNode |
DataNode |
DataNode |
ZK |
ZK |
ZK |
ResourceManager |
ResourceManager |
|
NodeManager |
NodeManager |
NodeManager |
3. 具体配置
(1)yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <!--启用resourcemanager ha--> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!--声明两台resourcemanager的地址--> <property> <name>yarn.resourcemanager.cluster-id</name> <value>cluster-yarn1</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>hadoop102</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>hadoop103</value> </property> <!--指定zookeeper集群的地址--> <property> <name>yarn.resourcemanager.zk-address</name> <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value> </property> <!--启用自动恢复--> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <!--指定resourcemanager的状态信息存储在zookeeper集群--> <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> </property> </configuration> |
(2)同步更新其他节点的配置信息
4. 启动hdfs
(1)在各个JournalNode节点上,输入以下命令启动journalnode服务:
sbin/hadoop-daemon.sh start journalnode
(2)在[nn1]上,对其进行格式化,并启动:
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
(3)在[nn2]上,同步nn1的元数据信息:
bin/hdfs namenode -bootstrapStandby
(4)启动[nn2]:
sbin/hadoop-daemon.sh start namenode
(5)启动所有DataNode
sbin/hadoop-daemons.sh start datanode
(6)将[nn1]切换为Active
bin/hdfs haadmin -transitionToActive nn1
5. 启动YARN
(1)在hadoop102中执行:
sbin/start-yarn.sh
(2)在hadoop103中执行:
sbin/yarn-daemon.sh start resourcemanager
(3)查看服务状态,如图3-24所示
bin/yarn rmadmin -getServiceState rm1
图3-24 YARN的服务状态
1.5 HDFS Federation架构设计
1. NameNode架构的局限性
(1)Namespace(命名空间)的限制
由于NameNode在内存中存储所有的元数据(metadata),因此单个NameNode所能存储的对象(文件+块)数目受到NameNode所在JVM的heap size的限制。50G的heap能够存储20亿(200million)个对象,这20亿个对象支持4000个DataNode,12PB的存储(假设文件平均大小为40MB)。随着数据的飞速增长,存储的需求也随之增长。单个DataNode从4T增长到36T,集群的尺寸增长到8000个DataNode。存储的需求从12PB增长到大于100PB。
(2)隔离问题
由于HDFS仅有一个NameNode,无法隔离各个程序,因此HDFS上的一个实验程序就很有可能影响整个HDFS上运行的程序。
(3)性能的瓶颈
由于是单个NameNode的HDFS架构,因此整个HDFS文件系统的吞吐量受限于单个NameNode的吞吐量。
2. HDFS Federation架构设计,如图3-25所示
能不能有多个NameNode
表3-3
NameNode |
NameNode |
NameNode |
元数据 |
元数据 |
元数据 |
Log |
machine |
电商数据/话单数据 |
图3-25 HDFS Federation架构设计
3. HDFS Federation应用思考
不同应用可以使用不同NameNode进行数据管理
图片业务、爬虫业务、日志审计业务
Hadoop生态系统中,不同的框架使用不同的NameNode进行管理NameSpace。(隔离性)
大数据技术之HA 高可用的更多相关文章
- 大数据Hadoop的HA高可用架构集群部署
1 概述 在Hadoop 2.0.0之前,一个Hadoop集群只有一个NameNode,那么NameNode就会存在单点故障的问题,幸运的是Hadoop 2.0.0之后解决了这个问题,即支持N ...
- 【大数据】Hadoop的高可用HA
第1章 HA高可用 1.1 HA概述 1)所谓HA(high available),即高可用(7*24小时不中断服务). 2)实现高可用最关键的策略是消除单点故障(single point of fa ...
- 大数据学习笔记——Hadoop高可用完全分布式模式完整部署教程(包含zookeeper)
高可用模式下的Hadoop集群搭建 本篇博客将会在之前写过的Linux的完整部署的基础上进行,暂时不会涉及到伪分布式或者完全分布式模式搭建,由于HA模式涉及到的配置文件较多,维护起来也较为复杂,相信学 ...
- 大数据学习笔记——Hbase高可用+完全分布式完整部署教程
Hbase高可用+完全分布式完整部署教程 本篇博客承接上一篇sqoop的部署教程,将会详细介绍完全分布式并且是高可用模式下的Hbase的部署流程,废话不多说,我们直接开始! 1. 安装准备 部署Hba ...
- 大数据技术之Hadoop3.1.2版本HA模式
大数据技术之Hadoop3.1.2版本HA模式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Hadoop的HA特点 1>.主备NameNode 2>.解决单点故障 ...
- Hadoop 3.1.2(HA)+Zookeeper3.4.13+Hbase1.4.9(HA)+Hive2.3.4+Spark2.4.0(HA)高可用集群搭建
目录 目录 1.前言 1.1.什么是 Hadoop? 1.1.1.什么是 YARN? 1.2.什么是 Zookeeper? 1.3.什么是 Hbase? 1.4.什么是 Hive 1.5.什么是 Sp ...
- 开源大数据技术专场(上午):Spark、HBase、JStorm应用与实践
16日上午9点,2016云栖大会“开源大数据技术专场” (全天)在阿里云技术专家封神的主持下开启.通过封神了解到,在上午的专场中,阿里云高级技术专家无谓.阿里云技术专家封神.阿里巴巴中间件技术部高级技 ...
- 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...
- CentOS7+Hadoop2.7.2(HA高可用+Federation联邦)+Hive1.2.1+Spark2.1.0 完全分布式集群安装
1 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.9.1 2.9.2 2.9.2.1 2.9.2.2 2.9.3 2.9.3.1 2.9.3.2 2.9.3.3 2. ...
随机推荐
- 微信audio自动播放(ios播放问题)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SpringMVC配置顺序的问题
1:web.xml:web应用一经加载,先来找他 1):指明applicationContext的位置 2):引入spring监听,ContextLoaderListe ...
- Trees in a Wood UVA - 10214 欧拉函数模板
太坑惹,,,没用longlong各种WA #include <iostream> #include <string.h> #include <cstdio> #in ...
- useradd -M -s /sbin/nologin mysql -g mysql 报错 Creating mailbox file
由于之前使用以下命令删除了mysql账户 userdel mysql groupdel mysql #如果删除了mysql用户,对应的组也会被删除(只有一个用户的情况下) 执行以下命令时报错 ...
- css上下左右居中
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- PHP搜索优化 sphinx 搭建测试
安装.环境:win7 64位 1.下载sphinx文件包 下载地址:http://sphinxsearch.com/downloads/archive/ 2.解压到D:/sphinx.新建文件夹dat ...
- 接口--全局异常配置--异常处理handle自定义配置
在重写了异常处理的handle类之后需要配置配置文件中handle的路径:
- light oj 1149 Factors and Multiples(二分匹配)
LightOJ1149 :Factors and Multiples 时间限制:2000MS 内存限制:32768KByte 64位IO格式:%lld & %llu 描述 You w ...
- Python缩进和选择
Python缩进和选择 缩进 Python最具特色的是用缩进来标明成块的代码.我下面以if选择结构来举例.if后面跟随条件,如果条件成立,则执行归属于if的一个代码块. 先看C语言的表达方式(注意,这 ...
- I Hate It HDU - 1754 (线段树)
注意点:scanf中使用%c时,会读取空格和回车,所以在%c之前要有一个空格 ( 或者直接使用%s也行,%s会忽略空格和回车 ).具体见下面的代码: #include<iostream> ...