这个问题似乎有很多种求法,但感觉上第二类Strling数的做法是最方便的。


问题

求下面这个式子:

∑i=0nik\sum_{i=0}^n i^ki=0∑n​ik

nnn的范围可以很大。


第二类Strling数

第二类Strling数记作S(n,m)S(n,m)S(n,m)、SnmS_n^mSnm​。

定义:将nnn个相同的球放在mmm个不同的箱子里的方案数(其中的每一个箱子至少有一个球)。

很容易推出一个式子:Snm=Sn−1m−1+mSn−1mS_n^m=S_{n-1}^{m-1}+mS_{n-1}^mSnm​=Sn−1m−1​+mSn−1m​。不解释。

有个通项公式,但是我不会推……不过在处理这个问题的时候用不着。


一个性质

ak=∑i=0kSkii!Caia^k=\sum_{i=0}^kS_k^i i! C_a^iak=i=0∑k​Ski​i!Cai​

如果直接理性地证明可能不容易,所以在这里通过它的定义来推理一下:

对于等式左边,相当于kkk个不同的球放在aaa个不同的箱子里。

对于等式右边,先枚举非空箱子的个数,SkiS_k^iSki​表示kkk个不同的球放在iii个相同的箱子里。乘上i!i!i!相当于放在不同的箱子里,再乘上非空箱子的选法CaiC_a^iCai​。

当然这条式子也可以化成:

∑i=0kSki∏j=a−i+1aj\sum_{i=0}^kS_k^i \prod_{j=a-i+1}^a ji=0∑k​Ski​j=a−i+1∏a​j


推理

先把结论放在前面:

∑i=0nik=∑i=0kSki∏j=n−i+1n+1ji+1\sum_{i=0}^n i^k=\sum_{i=0}^k\frac{S_k^i\prod_{j=n-i+1}^{n+1}j}{i+1}i=0∑n​ik=i=0∑k​i+1Ski​∏j=n−i+1n+1​j​

证明如下:

∑i=0nik=∑a=0n∑i=0kSkii!Cai=∑i=0kSkii!∑a=0nCai\sum_{i=0}^n i^k \\
=\sum_{a=0}^n\sum_{i=0}^kS_k^i i! C_a^i \\
=\sum_{i=0}^kS_k^i i!\sum_{a=0}^nC_a^i i=0∑n​ik=a=0∑n​i=0∑k​Ski​i!Cai​=i=0∑k​Ski​i!a=0∑n​Cai​

因为a&lt;ia&lt;ia<i时Cai=0C_a^i=0Cai​=0,所以

=∑i=0kSkii!∑a=inCai=\sum_{i=0}^kS_k^i i!\sum_{a=i}^nC_a^i=i=0∑k​Ski​i!a=i∑n​Cai​

由Cmn=Cm−1n−1+Cm−1nC_m^n =C_{m-1}^{n-1}+C_{m-1}^nCmn​=Cm−1n−1​+Cm−1n​得

∑a=inCai=Cii+Ci+1i+⋯+Cni=Cii+1+Cii+Ci+1i+⋯+Cni=Ci+1i+1+Ci+1i+⋯+Cni⋯=Cn+1i+1\sum_{a=i}^nC_a^i=C_i^i+C_{i+1}^i+\cdots +C_n^i \\
=C_i^{i+1}+C_i^i+C_{i+1}^i+\cdots +C_n^i \\
=C_{i+1}^{i+1}+C_{i+1}^i+\cdots +C_n^i \\
\cdots \\
=C_{n+1}^{i+1}
a=i∑n​Cai​=Cii​+Ci+1i​+⋯+Cni​=Cii+1​+Cii​+Ci+1i​+⋯+Cni​=Ci+1i+1​+Ci+1i​+⋯+Cni​⋯=Cn+1i+1​

所以原式又可以化成下面这样:

=∑i=0kSkii!Cn+1i+1=∑i=0kSki∏j=n−i+1n+1ji+1=\sum_{i=0}^kS_k^i i!C_{n+1}^{i+1} \\
=\sum_{i=0}^k\frac{S_k^i\prod_{j=n-i+1}^{n+1}j}{i+1}=i=0∑k​Ski​i!Cn+1i+1​=i=0∑k​i+1Ski​∏j=n−i+1n+1​j​

这样式子就推完了。

自然数幂求和——第二类Strling数的更多相关文章

  1. HDU 4045 Machine scheduling --第二类Strling数

    题意: n个数(1~n)取出r个数,取出的数相差要>=k, 然后分成m个可空组,问有多少种情况. 解法: 先看从n个数中取r个相差>=k的数的方法数,可以发现 dp[i][j] = dp[ ...

  2. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  3. Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )

    题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 :  题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...

  4. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  5. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  6. 自然数幂和&伯努利数(Bernoulli)

    二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...

  7. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  8. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  9. [总结] 第二类Stirling数

    上一道例题 我们来介绍第二类Stirling数 定义 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 .和第一类Stirling数不同的是,集合 ...

随机推荐

  1. Java-javaFx库运用-时钟显示

    JavaFx是开发Java GUI程序的新框架.JavaFX应用可以无缝地在桌面或web浏览器中运行.具有内建的2D.3D动画支持,以及视频和音频的回放功能,可以作为一个应用独立运行或者在浏览器中运行 ...

  2. 杂项:CSS3

    ylbtech-杂项:CSS3 1.返回顶部 1. CSS3是CSS(层叠样式表)技术的升级版本,于1999年开始制订,2001年5月23日W3C完成了CSS3的工作草案,主要包括盒子模型.列表模块. ...

  3. NetBeans简介和简单使用

    1.什么是NetBeans? NetBeans IDE:可以使开发人员利用Java平台能够快速创建Web.企业.桌面以及移动的应用程序: 支持语言:PHP.Ruby.JavaScript.Groovy ...

  4. mysql分区管理语句

    1.key分区语句: ALTER TABLE order_info PARTITION BY KEY(orderSn) PARTITIONS 127; 2.rang分区语句: ALTER TABLE ...

  5. Python3数据分析与挖掘建模实战✍✍✍

    Python3数据分析与挖掘建模实战 Python数据分析简介 Python入门 运行:cmd下"python hello.py" 基本命令: 第三方库 安装 Windows中 p ...

  6. HDU 3607 线段树+DP+离散化

    题意:从左往右跳箱子,每个箱子有金币数量,只能从矮处向高处跳,求最大可获得金币数,数据规模1<=n<=1e5. 显然是一个dp的问题,不难得出dp[ i ] = max(dp[j] )+v ...

  7. elasticsearch实现读写分离

    简介 今天我们不讲三国,我们讲一讲elasticsearch(以下简称ES)读写分离,这是个好东西,全文索引的时候使用它贼得劲,对elasticsearch索引原理不太清楚的,请自行查找相关的文章 这 ...

  8. JS,JQuery,获得选中的Radio值

    1.HTML代码 <input type=" checked="checked" /><label for="a1">男< ...

  9. 【笔记篇】不普及向——莫比乌斯反演学习笔记 && 栗题HAOI2011 Problem B

    Part0 广告(当然没有广告费) P.S. 这篇文章是边学着边用Typora写的...学完了题A了blog也就呼之欲出了~有latex化式子也非常方便...非常建议喜欢Markdown的dalao们 ...

  10. Web安全之Web 安全介绍与基础入门知识

    web安全介绍与基础入门知识 安全与安全圈 甲方与乙方 甲方:如腾讯,阿里等需要安全服务的公司 乙方:提供安全服务产品的服务型安全公司 web与二进制 web,研究web安全 二进制,研究如客户端安全 ...