洛谷$P$3301 $[SDOI2013]$方程 $exLucas$+容斥
正解:$exLucas$+容斥
解题报告:
在做了一定的容斥的题之后再看到这种题自然而然就应该想到容斥,,,?
没错这题确实就是容斥,和这题有点儿像
注意下的是这里的大于和小于条件处理方式不同昂$QwQ$
对于大于等于,直接在一开始就先给它那么多就好,就先提前把$m-=\sum_{i=n_{1}+1}^{n_{1}+n_{2}} A_i$,这样就只剩小于等于的条件了
小于等于,一看最多就8个,显然就成了经典容斥套路题了鸭,
于是就枚举哪个爆了,然后可重排列搞下,容斥下,就做完了
放下推出来的式子趴,,,$\sum_{s} [\ |s|\ \&\ 1\ ]\cdot \binom{n-\sum_{i\in S}(x_{i}+1)+m-1}{m}$,大概是这样儿的,如果有问题我打完代码之后会$upd$的$QwQ$
但是还有一个要注意的就,这个$mod$不一定是质数昂,,,所以考虑用个$exLucas$就欧克了鸭
$over$
昂还有一个卡时间的小$tip$,,,就是在$exLucas$里最开始特判下,当$n<0$,$m<0$,$n<m$的时候就可以直接$return\ 0$了,这样就能成功从2571$ms$变成150$ms$,,,
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define int long long
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) const int N=1e6+;
int fac_cnt,A[N],B[N],mod,wei[N],tmpp; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ex_gcd(ri a,ri b,ri &x,ri &y){if(!b){x=;y=;return;}ex_gcd(b,a%b,y,x);y-=(a/b)*x;}
il int power(ri x,ri y){/*if(!x)return 0;*/ri ret=;while(y){if(y&)ret=1ll*ret*x%mod;x=1ll*x*x%mod;y>>=;}return ret;}
struct nod
{
int p,pk,jc[N];
il void init(){jc[]=;rp(i,,pk)jc[i]=1ll*jc[i-]*(i%p?i:)%pk;}
il int power(ri x,ri y){ri ret=;while(y){if(y&)ret=1ll*ret*x%pk;x=1ll*x*x%pk;y>>=;}return ret;}
il int inv(ri d){ri x,y;ex_gcd(d,pk,x,y);return (x%pk+pk)%pk;}
il int multi(ri x){ri ret=;while(x){ret=ret*power(jc[pk],x/pk)%pk*jc[x%pk]%pk;x/=p;}return ret;}
il void getp(ri x,ri op,ri &k){while(x)k+=op*(x/p),x/=p;}
il int C(ri n,ri m)
{
ri a=multi(n),b=multi(m),c=multi(n-m),k=;getp(n,,k);getp(m,-,k);getp(n-m,-,k);
return 1ll*a*inv(b)%pk*inv(c)%pk*power(p,k)%pk;
}
nod(){pk=;}
}fac[];
il int crt()
{
ri p=A[],r=B[];
rp(i,,fac_cnt)
{ri x,y,np=A[i]*p;ex_gcd(p,A[i],x,y);x=(1ll*x*(B[i]-r)%np+np)%np;r=(1ll*x*p%np+r+np)%np;p=np;}
return r;
}
il int ex_lucas(ri n,ri m)
{
if(n< || m< || n<m)return ;
rp(i,,fac_cnt)A[i]=fac[i].pk,B[i]=fac[i].C(n,m);
return crt();
} main()
{
int T=read();tmpp=mod=read();
for(ri i=;i*i<=mod;++i){if(!(mod%i))fac[++fac_cnt].p=i;while(!(mod%i))fac[fac_cnt].pk*=i,mod/=i;}
if(mod>)fac[++fac_cnt].p=mod,fac[fac_cnt].pk=mod;mod=tmpp;
rp(i,,fac_cnt)fac[i].init();
while(T--)
{
ri n=read(),n1=read(),n2=read(),m=read()-n,S=<<n1,as=;
rp(i,,n1+n2)wei[i]=read()-;rp(i,n1+,n1+n2)m-=wei[i];
rp(i,,S-)
{
ri opt=,tmp_m=m;
rp(j,,n1)if(i&(<<(j-)))opt=mod-opt,tmp_m-=wei[j]+;
as=(as+1ll*opt*ex_lucas(tmp_m+n-,n-)%mod)%mod;
}
printf("%lld\n",as);
}
return ;
}
洛谷$P$3301 $[SDOI2013]$方程 $exLucas$+容斥的更多相关文章
- 洛谷P3172 [CQOI2015]选数(容斥)
传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...
- 洛谷P1447 [NOI2010]能量采集(容斥)
传送门 很明显题目要求的东西可以写成$\sum_{i=1}^{n}\sum_{j=1}^m gcd(i,j)*2-1$(一点都不明显) 如果直接枚举肯定爆炸 那么我们设$f[i]$表示存在公因数$i$ ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...
- 洛谷 P6295 - 有标号 DAG 计数(生成函数+容斥+NTT)
洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n ...
- 洛谷 P7360 -「JZOI-1」红包(Min-Max 容斥+推式子)
洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 ...
- 洛谷P5206 [WC2019]数树 [容斥,DP,生成函数,NTT]
传送门 Orz神仙题,让我长了许多见识. 长式子警告 思路 y=1 由于y=1时会导致后面一些式子未定义,先抓出来. printf("%lld",opt==0?1:(opt==1? ...
随机推荐
- iOS 获取一个类的所有方法
#import <objc/runtime.h> #import <objc/message.h> 需要导入运行时头文件和消息发送文件 - (void)runTests { u ...
- TCP/IP 、HTTP和SOCKET
TCP/IP协议概念 TCP/IP(Transmission Control Protocol/Internet Protocol)的简写,中文译名为传输控制协议/因特网互联协议,又叫网络通讯协议,这 ...
- Project Euler Problem 24-Lexicographic permutations
全排列的生成,c++的next_permutation是O(n)生成全排列的.具体的O(n)生成全排列的算法,在 布鲁迪 的那本组合数学中有讲解(课本之外,我就看过这一本组合数学),冯速老师翻译的,具 ...
- OpenStack☞HTTP协议
前言 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准 HTTP是一个基于TCP/IP通信协议 ...
- Mybatis/Ibatis,数据库操作的返回值
该问题,我百度了下,根本没发现什么有价值的文章:还是看源代码(详见最后附录)中的注释,最有效了!insert,返回值是:新插入行的主键(primary key):需要包含<selectKey&g ...
- ORACLE| ORACLE基础语法汇总
创 ORACLE| ORACLE基础语法汇总 2018-07-18 16:47:34 YvesHe 阅读数 9141更多 分类专栏: [数据库] 版权声明:本文为博主原创文章,遵循CC 4.0 B ...
- Project Euler Problem 16-Power digit sum
直接python搞过.没啥好办法.看了下别人做的,多数也是大数乘法搞过. 如果用大数做的话,c++写的话,fft优化大数乘法,然后快速幂一下就好了.
- supersocket新的配置属性 "textEncoding"
在 SuperSocket 1.6 之前的版本, 当你通过Session对象发送文本时, 将文本信息转换成能够通过Socket传输的二进制数据的默认编码是UTF8. 你可以通过设置 Session 的 ...
- H3C PPP基本配置
- 日历价差(calendar spread)
日历价差(calendar spread) 是指投资者买进到期日较远的期权 (简称远期期权),同时又卖出相同行权价格.相同数量但到期日较近的期权(简称近期期权),赚取两个不同期权隐含波动率的差价或者其 ...