背景

学习 Linear Regression in Python – Real Python,前面几篇文章分别讲了“regression怎么理解“,”线性回归怎么理解“,现在该是实现的时候了。

线性回归的 Python 实现:基本思路

  • 导入 Python 包: 有哪些包推荐呢?

  • 准备数据
  • 建模拟合
  • 验证模型的拟合度
  • 预测:用模型来预测新的数据

实现细节

以最简单的线性回归为例,代码参考的是原文。

重点是掌握基本思路,以及关键的几个函数。影响拟合度的因素很多,数据源首当其冲,模型的选择也是关键,这些在实际应用中具体讨论,这里就简单的对应前面的基本思路将 sample 代码及运行结果贴一下,稍加解释。

安装并导入包

根据自己的需要导入

pip install scikit-learn
pip install numpy
pip install statsmodels from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

准备数据

""" prepare data

x: regressor

y: predictor

reshape: make it two dimentional - one column and many rows

y can also be 2 dimensional

"""

x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))
"""
[[ 5]
[15]
[25]
[35]
[45]
[55]]
"""
y = np.array([5, 20, 14, 32, 22, 38])
print(x, y)
# [ 5 20 14 32 22 38]

建模

'''create a model and fit it'''
model = LinearRegression()
model = model.fit(x, y)
print(model)
# LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

验证模型的拟合度

'''get result
y = b0 + b1x
'''
r_sq = model.score(x, y)
print('coefficient of determination(

Python - 线性回归(Linear Regression) 的 Python 实现的更多相关文章

  1. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  2. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  3. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  5. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  6. 机器学习方法:回归(一):线性回归Linear regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工 ...

  7. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  8. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  9. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

随机推荐

  1. C#的循环语句(一)

    循环:反复执行某段代码. 循环四要素:初始条件,循环条件,循环体,状态改变.for(初始条件;循环条件;状态改变) {循环体} for 格式: for(int i=1/*初始条件*/;0<=10 ...

  2. PyCharm自定义代码块设置方法-添加-删除【详细步骤】

    原文:https://blog.csdn.net/chichu261/article/details/82887108 在做项目的时候,有些代码会需要频繁的码.如果去已有的项目中去复制,又需要找很久. ...

  3. hdu 1045 Fire Net(dfs)

    Fire Net Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  4. tf.variance_scaling_initializer() tensorflow学习:参数初始化

    CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我 ...

  5. P1102 走迷宫二

    题目描述 大魔王抓住了爱丽丝,将她丢进了一口枯井中,并堵住了井口. 爱丽丝在井底发现了一张地图,他发现他现在身处一个迷宫当中,从地图中可以发现,迷宫是一个N*M的矩形,爱丽丝身处迷宫的左上角,唯一的出 ...

  6. 1024程序员节!(JAVA Code)

    点我:传送门  程序员节快乐~ 水水题 A import java.util.*; import java.io.*; public class Main { public static void m ...

  7. linux 操作 I/O 端口

      在驱动硬件请求了在它的活动中需要使用的 I/O 端口范围之后, 它必须读且/或写到这些 端口. 为此, 大部分硬件区别 8-位, 16-位, 和 32-位端口. 常常你无法混合它们, 象你 正常使 ...

  8. vuejs 数据视图不更新

    由于 JavaScript 的限制,Vue 不能检测对象属性的添加或删除 可以使用 Vue.set(object, key, value) 方法向嵌套对象添加响应式属性 数组 this.$set(ar ...

  9. git常用常用操作指令

    GIT操作 1:git init 初始化空的仓库,会在当前文件夹生成一个隐藏.git的文件夹,相当于一个仓库. 2:提交代码的流程:工作代码区-->暂存区 -->主仓库 -->服务器 ...

  10. RocketMQ各组件介绍

    Rocket 架构主要分为4部分: Producer 消息发布者,支持分布式集群部署.Produer 通过 MQ 负载均衡模块选择相应 Broker 中的 queue 进行消息投递,投递过程支持快速失 ...