hdu 5917
题意:给你一个无向图,问图中有多少个符合条件的集合?条件为这个集合里面存在一个子集(大小>=3)为团或者都是孤立点。答案mod1e9+7;
根据 Ramsey定理,大于等于6个的集合,肯定存在一个子集的边都是红色或者都是蓝色,即为团还是为孤立点;
所以当n大于等于6的时候,所有的取6个或六个以上的子集的集合都是符合的,所以将这些排列组合的方式全部都计算在内;
即C(n,i) i的取值范围为(6~n) 但是这样子算会超时,我们可以计算C(n,i) i从0开始计算,这样子所有的数加起来,就是2^n
然后再减去C(n,i)i从0到5即可;
n的取值范围到50,所以暴力不超时;
然后还剩下点集为3到5的情况,这个时候,我们就分别枚举点集为3,4,5,判断是否满足情况即可(题目给出的m条边就在这个时候起作用)
只要满足图中有3个为孤立点即可;
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int M = 1e2+;
const LL mod = 1e9+;
int ncase,n,m,cas=;
int vis[M][M];
LL fac[M];
void init()
{ ///预处理阶乘
fac[]=;fac[]=;
for (int i=;i<M;i++)
fac[i]=fac[i-]*i%mod;
}
LL quick_pow(LL p,LL k) ///快速幂
{
LL res=,tp=p;
if(k<) return ;
while(k){
if(k&) res=res*tp%mod;
tp=tp*tp%mod;
k>>=;
}
return res;
}
LL C(int n,int m)
{
return fac[n]*quick_pow(fac[m],mod-)%mod*quick_pow(fac[n-m],mod-)%mod;
}///费马小定理求逆元+快速幂
int judge(int i,int j,int k){ ///判断三点之间满不满足不稳定点集
if(vis[i][j]&&vis[i][k]&&vis[j][k]) return ;///三点之间相连
if(!vis[i][j]&&!vis[i][k]&&!vis[j][k]) return ; ///三点之间不互联
return ;
}
int judge1(int i,int j,int k,int l)
{
if(judge(i,j,k)||judge(i,j,l)||judge(j,k,l)||judge(i,k,l)) return ; ///表示4个点中有三个点为不稳定点集就行,为什么呢?
///因为时题目要求的,不稳定点集为3个点。
return ;
}
int judge2(int i,int j,int k,int l,int o){
///表示5个点中有4个点满足就行
if(judge1(i,j,k,l)||judge1(i,j,k,o)||judge1(i,j,l,o)||judge1(j,k,l,o)||judge1(i,k,l,o)) return ;
return ;
} int main(){ init();
scanf("%d",&ncase);
while(ncase--){
scanf("%d%d",&n,&m);
memset(vis,false,sizeof(vis));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
vis[u][v]=vis[v][u]=;
}
LL ans=;
if(n>=){
ans=(ans+quick_pow(,n))%mod; ///多项式定理C(n,0)+C(n,1)+...+C(n,n)=2^n
///C(n,k)(k>=6)表示,从n个中取k个出来,总存在一个不稳定点集的个数(三点之间互联或三点之间不连)
for(int i=;i<;i++) ///减去前5个
ans=(ans-C(n,i)+mod)%mod;
}
if(n>=){ ///暴力取3个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
if(judge(i,j,k)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取4个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
if(judge1(i,j,k,l)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取5个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
for(int o=l+;o<=n;o++)
if(judge2(i,j,k,l,o)) ans=(ans+)%mod;
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;}
hdu 5917的更多相关文章
- HDU 5917 Instability ramsey定理
http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后 ...
- HDU - 5917 水题
题意:n个点m条边,找点集个数,点集满足有任意三个点成环,或者三个点互不相连 题解:暴力复杂度O(n^5/120*O(ok))==O(能过) //#pragma comment(linker, &qu ...
- 近几年ACM/ICPC区域赛铜牌题
2013 changsha zoj 3726 3728 3736 3735 2013 chengdu hud 4786 4788 4790 2013 hangzhou hdu 4770 4771 47 ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
- HDU 4569 Special equations(取模)
Special equations Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 4006The kth great number(K大数 +小顶堆)
The kth great number Time Limit:1000MS Memory Limit:65768KB 64bit IO Format:%I64d & %I64 ...
- HDU 1796How many integers can you find(容斥原理)
How many integers can you find Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d ...
随机推荐
- 全栈之路-小程序API-SpringBoot项目中参数校验机制与LomBok工具集使用
参数校验机制在web开发中是非常重要的,每当看到现在所在公司的校验代码,我都有头疼,每一个接口都是重新写参数的校验,有些复杂的接口,参数的校验甚至占了整个接口代码量的挺大一部分的,看着我都有些头疼,我 ...
- CentOS7配置ftp
1.下载vsftpd yum install -y vsftpd 2.设置开机自启动 systemctl enable vsftpd.service 3.启动 systemctl start vsft ...
- Nginx-3.控制nginx
原文 nginx 通过信号来控制.对应linux系统就是用kill命令. The command kill sends the specified signal to the specified pr ...
- web端常见测试
一.登录注册功能 1.页面调转 2.tab键与enter键 3.密码加密显示,是否支持复制粘贴 4.账号密码校验 5.刷新页面,更新验证码 二.界面测试 1.样式.颜色.整体布局风格 2.最大化.最小 ...
- Java开学测试-学生成绩管理系统
题目: 1.定义 ScoreInformation 类,其中包括七个私有变量(stunumber, name, mathematicsscore, englishiscore,networkscore ...
- LIS 51Nod 1134 最长递增子序列
给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个 ...
- Winfom递归绑定树节点
/// <summary> /// 绑定树节点 /// </summary> /// <param name="pid"></param& ...
- 第一个,net core项目,一起入门 !!!
最近项目上开始使用.net core,新的项目,熟悉的东西比较多,现在花点时间来梳理一下,重头开始搭建一个.net core项目.哈哈,这个相对老手来说,估计会觉得小儿科,没事,也就当一次分享总结罢了 ...
- C# GZip Compress DeCompress
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 在Java后端如何添加拦截器
在安全编码规范中,在Java后端controller层接口需要对调用者的身份进行确认,以防非法用户进行访问.若是在controller层的每个接口处都添加逻辑判断,那么代码重复度高,并且费力费时.此时 ...