hdu 5917
题意:给你一个无向图,问图中有多少个符合条件的集合?条件为这个集合里面存在一个子集(大小>=3)为团或者都是孤立点。答案mod1e9+7;
根据 Ramsey定理,大于等于6个的集合,肯定存在一个子集的边都是红色或者都是蓝色,即为团还是为孤立点;
所以当n大于等于6的时候,所有的取6个或六个以上的子集的集合都是符合的,所以将这些排列组合的方式全部都计算在内;
即C(n,i) i的取值范围为(6~n) 但是这样子算会超时,我们可以计算C(n,i) i从0开始计算,这样子所有的数加起来,就是2^n
然后再减去C(n,i)i从0到5即可;
n的取值范围到50,所以暴力不超时;
然后还剩下点集为3到5的情况,这个时候,我们就分别枚举点集为3,4,5,判断是否满足情况即可(题目给出的m条边就在这个时候起作用)
只要满足图中有3个为孤立点即可;
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int M = 1e2+;
const LL mod = 1e9+;
int ncase,n,m,cas=;
int vis[M][M];
LL fac[M];
void init()
{ ///预处理阶乘
fac[]=;fac[]=;
for (int i=;i<M;i++)
fac[i]=fac[i-]*i%mod;
}
LL quick_pow(LL p,LL k) ///快速幂
{
LL res=,tp=p;
if(k<) return ;
while(k){
if(k&) res=res*tp%mod;
tp=tp*tp%mod;
k>>=;
}
return res;
}
LL C(int n,int m)
{
return fac[n]*quick_pow(fac[m],mod-)%mod*quick_pow(fac[n-m],mod-)%mod;
}///费马小定理求逆元+快速幂
int judge(int i,int j,int k){ ///判断三点之间满不满足不稳定点集
if(vis[i][j]&&vis[i][k]&&vis[j][k]) return ;///三点之间相连
if(!vis[i][j]&&!vis[i][k]&&!vis[j][k]) return ; ///三点之间不互联
return ;
}
int judge1(int i,int j,int k,int l)
{
if(judge(i,j,k)||judge(i,j,l)||judge(j,k,l)||judge(i,k,l)) return ; ///表示4个点中有三个点为不稳定点集就行,为什么呢?
///因为时题目要求的,不稳定点集为3个点。
return ;
}
int judge2(int i,int j,int k,int l,int o){
///表示5个点中有4个点满足就行
if(judge1(i,j,k,l)||judge1(i,j,k,o)||judge1(i,j,l,o)||judge1(j,k,l,o)||judge1(i,k,l,o)) return ;
return ;
} int main(){ init();
scanf("%d",&ncase);
while(ncase--){
scanf("%d%d",&n,&m);
memset(vis,false,sizeof(vis));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
vis[u][v]=vis[v][u]=;
}
LL ans=;
if(n>=){
ans=(ans+quick_pow(,n))%mod; ///多项式定理C(n,0)+C(n,1)+...+C(n,n)=2^n
///C(n,k)(k>=6)表示,从n个中取k个出来,总存在一个不稳定点集的个数(三点之间互联或三点之间不连)
for(int i=;i<;i++) ///减去前5个
ans=(ans-C(n,i)+mod)%mod;
}
if(n>=){ ///暴力取3个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
if(judge(i,j,k)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取4个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
if(judge1(i,j,k,l)) ans=(ans+)%mod;
}
if(n>=){ ///暴力取5个
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
for(int l=k+;l<=n;l++)
for(int o=l+;o<=n;o++)
if(judge2(i,j,k,l,o)) ans=(ans+)%mod;
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;}
hdu 5917的更多相关文章
- HDU 5917 Instability ramsey定理
http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后 ...
- HDU - 5917 水题
题意:n个点m条边,找点集个数,点集满足有任意三个点成环,或者三个点互不相连 题解:暴力复杂度O(n^5/120*O(ok))==O(能过) //#pragma comment(linker, &qu ...
- 近几年ACM/ICPC区域赛铜牌题
2013 changsha zoj 3726 3728 3736 3735 2013 chengdu hud 4786 4788 4790 2013 hangzhou hdu 4770 4771 47 ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
- HDU 4569 Special equations(取模)
Special equations Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 4006The kth great number(K大数 +小顶堆)
The kth great number Time Limit:1000MS Memory Limit:65768KB 64bit IO Format:%I64d & %I64 ...
- HDU 1796How many integers can you find(容斥原理)
How many integers can you find Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d ...
随机推荐
- junit 运行(eclipse + IDEA)
记得刚用IDEA 开发的时候, 什么都还不熟,以为junit 运行还跟eclipse 一样, 结果试了后才知道是不一样的. 现在刚好写junit 相关的,也就都记录下来吧 Eclipse:eclip ...
- Android实战项目——家庭记账本(三)
今天完成的主要内容有: 1.主页面账单明细部分细节展示 2.对每个列表项,点击打开新的可编辑修改具体页面 3.实现了搜索页面的UI布局 4.优化了部分页面的UI,提升用户视觉和使用体验 实现效果如下: ...
- javaSE学习笔记(10)---List、Set
javaSE学习笔记(10)---List.Set 1.数据存储的数据结构 常见的数据结构 数据存储的常用结构有:栈.队列.数组.链表和红黑树. 1.栈 栈:stack,又称堆栈,它是运算受限的线性表 ...
- adb -- cannot connect to x.x.x.x:5555“由于目标计算机积极拒绝,无法连接”
原因 安卓系统未打开adb网络调试功能 通过USB方式连接到安卓系统设置即可 解决 先通过USB线连接 adb devices 能看到所连接的设备情况下 adb root 权限提权 adb shell ...
- 使用Dockerfile构建镜像命令自己的理解
1.FROM 基于那个基础命令开始构建镜像,我的理解就是选择一个操作系统 2.CMD 里面放的是指定一个容器启动时要运行的命令 3.ENTRYPOINT 类似于CDM命令,不过 docker run ...
- 0级搭建类006-Oracle Solaris 安装 (10.13) 公开
项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列目前不对外发布,仅作为博客记录.如学员在实际工作过程中需提前 ...
- 入门移动端混合开发 实战京东 APP(完整更新)
课程资料获取链接:点击这里 混合开发入门 主流开发方案实战京东移动端APP 无需原生开发基础,也能完美呈现京东商城.本课程融合vue.Android.IOS等目前流行的前端和移动端技术,混合开发经典电 ...
- JSP+Servlet开发物流管理系统 源码
开发环境: Windows操作系统开发工具:Myeclipse+Jdk+Tomcat+MYSQL数据库 运行效果图:
- 一道CTF针对XXE漏洞的练习
题目链接:http://web.jarvisoj.com:9882/ 目的很明确获取/home/ctf/flag.txt的内容 一般读取目标机的本地文件都会用到file协议. 思路: 那么思路一:文件 ...
- Laradock + tp5 + nginx 配置虚拟机域名始终跳转首页/502报错
laradock默认配置文件如下: 配置运用于本地windows+phpstudy 部署的laravel项目未出现问题,如下: server { listen ; listen [::]:; serv ...