题面

题目描述

给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果

输入格式

一个正整数n

输出格式

一个数,表示答案

样例输入

3

样例输出

25

提示

对于20%的数据:n<=5

对于50%的数据:n<=500

对于100%的数据:1<=n<=5000

题目分析

设\(f(i)\)表示有\(i\)个点构成DAG图

设其中\(j\)个点出度为\(0\),则有:

\[f(i)=\sum_{j=1}^i\binom ij2^{(i-j)\cdot j}\cdot f(i-j)
\]

意思是,在\(i\)个点中选出\(j\)个点有\(\binom ij\)种方案,

在\(i-j\)个点与这\(j\)个点之间随意连边,\(i-j\)个点构成的图仍为DAG的情况数。

但由于无法保证那\(i-j\)个点一定出度不为\(0\),所以需要容斥。

\[f(i)=\sum_{j=1}^i\binom ij2^{(i-j)\cdot j}\cdot f(i-j)\cdot (-1)^{j-1}
\]

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=5005,mod=10007;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int f[N],c[N][N];
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=ret*x%mod;
x=x*x%mod,k>>=1;
}
return ret;
}
int main(){
freopen("DAG.in","r",stdin);
freopen("DAG.out","w",stdout);
int n=Getint();
c[0][0]=f[0]=1;
for(register int i=1;i<=n;c[i++][0]=1){
for(register int j=1;j<=i;++j){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
f[i]=(f[i]+c[i][j]*ksm(2,j*(i-j)%(mod-1))%mod*f[i-j]%mod*((j&1)?1:-1)+mod)%mod;
}
}
cout<<f[n];
return 0;
}

COGS2353 【HZOI2015】有标号的DAG计数 I的更多相关文章

  1. COGS2355 【HZOI2015】 有标号的DAG计数 II

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...

  2. COGS2356 【HZOI2015】有标号的DAG计数 IV

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...

  3. 有标号的DAG计数(FFT)

    有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...

  4. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  5. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  6. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  7. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

  8. COGS 2353 2355 2356 2358 有标号的DAG计数

    不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...

  9. 有标号的DAG计数 III

    Description 给定一正整数n,对n个点有标号的有向无环图进行计数,这里加一个限制:此图必须是弱连通图.输出答案 mod 10007 的结果. Solution 弱连通图即把边变成无向之后成为 ...

随机推荐

  1. MySQL慢查询日志分割

    mysql> set global slow_query_log=0; Query OK, 0 rows affected (0.00 sec)   mysql> set global s ...

  2. DFS问题举例:N个整数选k个使其和为x

    N个整数选k个使其和为x,若有多个方案,选择元素平方和最大的一个 #include<cstdio> #include<cmath> #include<cstring> ...

  3. python库argparse中type的新奇指定方法

    最近在看一些项目的源码,总是能学到好多东西. 关于arparse中type的类型指定 不止可以指定常规类型,还可以加一些自己类型判断,具体用法如下(来源): def str2bool(v): &quo ...

  4. git branch 分支和分支合并

    一般一个项目有一个默认的分支 master 主分支,然后可以有许多个分支,在别的分支上的操作不会影响到主分支.使用git branch查看当前多多少分支以及当前处于哪个分支上:执行git branch ...

  5. Django(九) xadmin全局配置

    xadmin的使用,首先需要对model进行注册,才能在后台管理中进行操作. 1.在app里创建py文件:adminx(必须这个名称) 2.导入xadmin和models里的类,格式如下: 其中lis ...

  6. springcloud中config启动时候报错Caused by: java.lang.IllegalArgumentException: Could not resolve placeholder 'config.info' in value "${config.info}"

    -noverify -Dspring.output.ansi.enabled=always -Dcom.sun.management.jmxremote -Dcom.sun.management.jm ...

  7. HttpURLConnection模拟登录学校的正方教务系统

    教务系统登录界面 如图1-1 1-1 F12-->network查看登录教务系统需要参数: __VIEWSTAT txtUserName TextBox2 txtSecretCode Radio ...

  8. Spark Streaming设计

  9. scala中的闭包

    scala闭包 代码示例: package test.close_pack import scala.collection.mutable.ArrayBuffer /** * AUTHOR Guozy ...

  10. 通过statCounter计算给定的RDD[Double]的统计信息的方法

    需求1:给定一个RDD[Double],进行计算,该RDD的统计信息(count,mean,stdev,max,min) 代码: def main(args: Array[String]): Unit ...