Deep Belief Network简介——本质上是在做逐层无监督学习,每次学习一层网络结构再逐步加深网络
from:http://www.cnblogs.com/kemaswill/p/3266026.html
1. 多层神经网络存在的问题
常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层:

理论上来说, 隐藏层越多, 模型的表达能力应该越强。但是, 当隐藏层数多于一层时, 如果我们使用随机值来初始化权重, 使用梯度下降来优化参数就会出现许多问题[1]:
- 如果初始权重值设置的过大, 则训练过程中权重值会落入局部最小值(而不是全局最小值)。
- 如果初始的权重值设置的过小, 则在使用BP调整参数时, 当误差传递到最前面几层时, 梯度值会很小, 从而使得权重的改变很小, 无法得到最优值。[疑问, 是否可以提高前几层的learning rate来解决这个问题?]
所以, 如果初始的权重值已经比较接近最优解时, 使用梯度下降可以得到一个比较好的结果, Hinton等在2006年提出了一种新的方法[2]来求得这种比较接近最优解的初始权重。
2. Deep Belief Network
DBN是由Hinton在2006年提出的一种概率生成模型, 由多个限制玻尔兹曼机(RBM)[3]堆栈而成:


在训练时, Hinton采用了逐层无监督的方法来学习参数。首先把数据向量x和第一层隐藏层作为一个RBM, 训练出这个RBM的参数(连接x和h1的权重, x和h1各个节点的偏置等等), 然后固定这个RBM的参数, 把h1视作可见向量, 把h2视作隐藏向量, 训练第二个RBM, 得到其参数, 然后固定这些参数, 训练h2和h3构成的RBM, 具体的训练算法如下:

上图最右边就是最终训练得到的生成模型:

用公式表示为:

3. 利用DBN进行有监督学习
在使用上述的逐层无监督方法学得节点之间的权重以及节点的偏置之后(亦即初始化), 可以在DBN的最顶层再加一层, 来表示我们希望得到的输出, 然后计算模型得到的输出和希望得到的输出之间的误差, 利用后向反馈的方法来进一步优化之前设置的初始权重。因为我们已经使用逐层无监督方法来初始化了权重值, 使其比较接近最优值, 解决了之前多层神经网络训练时存在的问题, 能够得到很好的效果。
参考文献:
[1]. Reducing the Dimensionality of Data with Neural Networks. G. E. Hinton, R. R. Slakhutdinov. 2006, Science.
[2]. A fast learning algorithm for deep belief nets. G. E. Hinton, Simon Osindero, Yee-Whye Teh. 2006, Neural Computation.
[3]. 限制玻尔兹曼机(Restricted Boltzmann Machine, RBM)简介
[4]. Scholarpedia: Deep Belief Networks
[5]. Learning Deep Architectures for AI. Yoshua Bengio
Deep Belief Network简介——本质上是在做逐层无监督学习,每次学习一层网络结构再逐步加深网络的更多相关文章
- Deep Belief Network简介
Deep Belief Network简介 1. 多层神经网络存在的问题 常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层: 理论上来说, 隐藏层越多, 模型的表达能力应该越强.但是, 当 ...
- Deep Belief Network
Deep Belief Network3实例3.1 测试数据按照上例数据,或者新建图片识别数据. 3.2 DBN实例//****************例2(读取固定样本:来源于经典优化算法测试函数S ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.2 http://blog.csdn.net/sunbow0 第二章Deep ...
- GAN初步——本质上就是在做优化,对于生成器传给辨别器的生成图片,生成器希望辨别器打上标签 1,体现在loss上!
from:https://www.sohu.com/a/159976204_717210 GAN 从 2014 年诞生以来发展的是相当火热,比较著名的 GAN 的应用有 Pix2Pix.CycleGA ...
- yarn架构——本质上是在做解耦 将资源分配和应用程序状态监控两个功能职责分离为RM和AM
Hadoop YARN架构解读 原Mapreduce架构 原理架构图如下: 图 1.Hadoop 原 MapReduce 架构 原 MapReduce 程序的流程:首先用户程序 (JobClient) ...
- 使用深度学习检测TOR流量——本质上是在利用报文的时序信息、传输速率建模
from:https://www.jiqizhixin.com/articles/2018-08-11-11 可以通过分析流量包来检测TOR流量.这项分析可以在TOR 节点上进行,也可以在客户端和入口 ...
- Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结
1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 ...
随机推荐
- nginx location正则写法
nginx location正则写法 一个示例: location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # ...
- 20145322 《网络对抗》 MSF基础应用1
20145322何志威 Exp5 MS08_067漏洞测试 实验问答 什么是exploit.payload.encode exploit:通过一个漏洞对程序进行攻击的过程 payload:有具体功能作 ...
- JRebel for IntelliJ 热部署破解方法
1.打开idea,然后打开设置. 2.点击Plugins 3.重启之后点击 4.下载激活JRebel的插件,下载地址:https://github.com/ilanyu/ReverseProxy/re ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- Java8的新特性,二进制序列转十进制数字
package kata_007_二进制序列转十进制int; /** * java8 Lambda表达式转换binary序列->十进制数 */ import java.util.ArrayLis ...
- Redis Cluster集群
一.redis-cluster设计 Redis集群搭建的方式有多种,例如使用zookeeper等,但从redis 3.0之后版本支持redis-cluster集群,Redis-Cluster采用无中心 ...
- 【Coursera】Seventh Week
Application Layer:Use the services of the TCP layer Quick Review Link Layer(Ethernet):gets the data ...
- FOJ-1001-Duplicate Pair
题目:Duplicate Pair 大意: 有多组测试数据,输入整数n,接着输入n个整数(integers),这些数字几乎都只出现一次,但其中有一个数出现了两次,请输出这个数. 题解: 大数据问题,普 ...
- SPOJ - HIGH Highways(矩阵树定理)
https://vjudge.net/problem/SPOJ-HIGH 题意: 给n个点m条边,求生成树个数. 思路: 矩阵树裸题. 具体的话可以看一下周冬的论文<生成树的计数及其应用> ...
- R语言 sub与gsub函数的区别
> text <- c("we are the world", "we are the children") > sub("w&qu ...