Python Data Science Toolbox Part 1 Learning 1 - User-defined functions
User-defined functions
Strings in Python
To assign the string
company = 'DataCamp'
You've also learned to use the operations +
and *
with strings. Unlike with numeric types such as ints and floats, the +
operator concatenates strings together, while the *
concatenates multiple copies of a string together. In this exercise, you will use the +
and *
operations on strings to answer the question below. Execute the following code in the shell:
object1 = "data" + "analysis" + "visualization"
object2 = 1 * 3
object3 = "1" * 3
->object1
contains "dataanalysisvisualization"
, object2
contains 3
, object3
contains "111"
.
Recapping built-in functions
- Assign
str(x)
to a variabley1
:y1 = str(x)
- Assign
print(x)
to a variabley2
:y2 = print(x)
- Check the types of the variables
x
,y1
, andy2
.
->x
is a float
, y1
is a str
, and y2
is a NoneType
.
It is important to remember that assigning a variable y2
to a function that prints a value but does not return a value will results in that variable y2
being oftype
NoneType
.
Write a simple function
You can use it as a pattern to define shout()
.
def square():
new_value = 4 ** 2
return new_value
# Define the function shout
def shout():
"""Print a string with three exclamation marks"""
# Concatenate the strings: shout_word
shout_word = 'congratulations'+ '!!!'
# Print shout_word
print(shout_word)
# Call shout
shout()
Single-parameter functions
You will now update shout()
by adding a parameter so that it can accept and process any string argument passed to it.
# Define shout with the parameter, word
def shout(word):
"""Print a string with three exclamation marks"""
# Concatenate the strings: shout_word
shout_word = str(word) + '!!!'
# Print shout_word
print(shout_word)
# Call shout with the string 'congratulations'
shout('congratulations')
Functions that return single values
You're getting very good at this! Try your hand at another modification to the shout()
function so that it now returns a single value instead of printing within the function. Recall that thereturn
keyword lets you return values from functions.
# Define shout with the parameter, word
def shout(word):
"""Return a string with three exclamation marks"""
# Concatenate the strings: shout_word
shout_word = str(word) + '!!!'
# Replace print with return
return shout_word
# Pass 'congratulations' to shout: yell
yell = shout('congratulations')
# Print yell
print(yell)
Multiple parameters and return values
Functions with multiple parameters
Here, you will modify shout()
to accept two arguments.
# Define shout with parameters word1 and word2
def shout(word1,word2):
"""Concatenate strings with three exclamation marks"""
# Concatenate word1 with '!!!': shout1
shout1 = word1 + '!!!'
# Concatenate word2 with '!!!': shout2
shout2 = word2 + '!!!'
# Concatenate shout1 with shout2: new_shout
new_shout = shout1 + shout2
# Return new_shout
return new_shout
# Pass 'congratulations' and 'you' to shout(): yell
yell = shout('congratulations', 'you')
# Print yell
print(yell)
A brief introduction to tuples
how to construct, unpack, and access tuple elements.
a, b, c = even_nums
# Unpack nums into num1, num2, and num3
print(nums)
num1, num2, num3 = (3, 4, 6)
# Construct even_nums
print(nums)
nums = (2, 4, 6)
print(nums)
even_nums = nums
print(even_nums)
Function that return multiple values
Here you will return multiple values from a function using tuples.
Note that the return statement return x, y
has the same result as return (x, y)
: the former actually packs x
and y
into a tuple under the hood!
# Define shout_all with parameters word1 and word2
def shout_all(word1, word2):
# Concatenate word1 with '!!!': shout1
shout1 = word1 + '!!!'
# Concatenate word2 with '!!!': shout2
shout2 = word2 + '!!!'
# Construct a tuple with shout1 and shout2: shout_words
shout_words = (shout1, shout2)
# Return shout_words
return shout_words
# Pass 'congratulations' and 'you' to shout_all(): yell1, yell2
yell1, yell2 = shout_all('congratulations','you')
# Print yell1 and yell2
print(yell1)
print(yell2)
Bringing it all together
Bringing it all together (1)
You've learned how to add parameters to your own function definitions, return a value or multiple values with tuples, and how to call the functions you've defined.
For this exercise, your goal is to recall how to load a dataset into a DataFrame. The dataset contains Twitter data and you will iterate over entries in a column to build a dictionary in which the keys are the names of languages and the values are the number of tweets in the given language. The file tweets.csv
is available in your current directory.
# Import pandas
import pandas as pd
# Import Twitter data as DataFrame: df
df = pd.read_csv('tweets.csv')
# Initialize an empty dictionary: langs_count
langs_count = {}
# Extract column from DataFrame: col
col = df['lang']
# Iterate over lang column in DataFrame
for entry in col:
# If the language is in langs_count, add 1
if entry in langs_count.keys():
langs_count[entry] += 1
# Else add the language to langs_count, set the value to 1
else:
langs_count[entry] = 1
# Print the populated dictionary
print(langs_count)
Great job! You've now defined the functionality for iterating over entries in a column and building a dictionary with keys the names of languages and values the number of tweets in the given language.
Bringing it all together (2)
In this exercise, you will define a function with the functionality you developed in the previous exercise, return the resulting dictionary from within the function, and call the function with the appropriate arguments
For your convenience, the pandas package has been imported aspd
and the 'tweets.csv'
file has been imported into thetweets_df
variable.
# Define count_entries()
def count_entries(df, col_name):
"""Return a dictionary with counts of
occurrences as value for each key."""
# Initialize an empty dictionary: langs_count
langs_count = {}
# Extract column from DataFrame: col
col = df[col_name]
# Iterate over lang column in DataFrame
for entry in col:
# If the language is in langs_count, add 1
if entry in langs_count.keys():
langs_count[entry] += 1
# Else add the language to langs_count, set the value to 1
else:
langs_count[entry] = 1
# Return the langs_count dictionary
return langs_count
# Call count_entries(): result
result = count_entries(tweets_df,'lang')
# Print the result
print(result)
Python Data Science Toolbox Part 1 Learning 1 - User-defined functions的更多相关文章
- python data science handbook1
import numpy as np import matplotlib.pyplot as plt import seaborn; seaborn.set() rand = np.random.Ra ...
- 【转】The most comprehensive Data Science learning plan for 2017
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...
- 七个用于数据科学(data science)的命令行工具
七个用于数据科学(data science)的命令行工具 数据科学是OSEMN(和 awesome 相同发音),它包括获取(Obtaining).整理(Scrubbing).探索(Exploring) ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- 【转】Comprehensive learning path – Data Science in Python
Journey from a Python noob to a Kaggler on Python So, you want to become a data scientist or may be ...
- Intermediate Python for Data Science learning 2 - Histograms
Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...
- 学习Data Science/Deep Learning的一些材料
原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...
- R8:Learning paths for Data Science[continuous updating…]
Comprehensive learning path – Data Science in Python Journey from a Python noob to a Kaggler on Pyth ...
- A Complete Tutorial to Learn Data Science with Python from Scratch
A Complete Tutorial to Learn Data Science with Python from Scratch Introduction It happened few year ...
随机推荐
- javap(反汇编命令)详解
javap是JDK自带的反汇编器,可以查看java编译器为我们生成的字节码.通过它,我们可以对照源代码和字节码,从而了解很多编译器内部的工作. 语法: javap [ 命令选项 ] class. . ...
- iOS8新特性(2)——UIPopoverController和UIPresentationController
一.以往使用 UIPopoverController 都是只在iPad上使用 /** * UIPopoverController 只能用于iPad,上,iPhone上使用会崩溃 */ -(void)o ...
- 重写jquery serialize 方法
/**取表单中的对象 *attrName:为元素的的属性名称不设置则默认为name */ $.fn.serialize = function (attrName) { var ret = {}; if ...
- import tkinter与from tkinter import *的区别
from tkinter import * class DirList(object): def __init__(self,initdir=None): self.top= Tk() ##可以不加t ...
- Oracle管理监控之oracle客户端链接服务器配置文档
开始菜单--Oracle - OraClient10g_home1--配置和移植工具--Net Configuration Assistant 打开窗口如下: 选择 本地Net服务名配置 点 下一步 ...
- PDB、PD、PMP、RTB哪个更好?为品牌主解锁程序化购买的选择技巧
PDB.PD.PMP.RTB哪个更好?为品牌主解锁程序化购买的选择技巧 https://baijiahao.baidu.com/s?id=1620277114893208111&wfr=spi ...
- 场景服务只创建了 Service Difinition 和feature layer
环境:物理机 pro1.4:虚拟机 (server + datastore + portal + adaptor) 10.4.1 发布场景服务,正常情况应portal中查看,应包含四部分内容:Serv ...
- mysql八:视图、触发器、事务、存储过程、函数
一 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 使用视图我们可以把查询过程中的 ...
- 【解决】win10 启用系统保护 灰色 不可选 的解决办法
安装Win10后,发现系统保护无法启用.'启用系统保护' 灰色 不可选状态: 搜了一堆解决办法,包括: 1.组策略修改 2.服务启用 3.各种重启 等,不适用. 然后,我把系统预留分区 删了,删了…… ...
- Python几种并发实现方案的性能比较
http://blog.csdn.net/permike/article/details/54846831 Python几种并发实现方案的性能比较 2017-02-03 14:33 1541人阅读 评 ...