User-defined functions

from:https://campus.datacamp.com/courses/python-data-science-toolbox-part-1/writing-your-own-functions?ex=1

  • Strings in Python

To assign the string

company = 'DataCamp'

You've also learned to use the operations + and * with strings. Unlike with numeric types such as ints and floats, the + operator concatenates strings together, while the * concatenates multiple copies of a string together. In this exercise, you will use the + and * operations on strings to answer the question below. Execute the following code in the shell:

object1 = "data" + "analysis" + "visualization"
object2 = 1 * 3
object3 = "1" * 3

->object1 contains "dataanalysisvisualization"object2contains 3object3 contains "111".

  • Recapping built-in functions

  • Assign str(x) to a variable y1y1 = str(x)
  • Assign print(x) to a variable y2y2 = print(x)
  • Check the types of the variables xy1, and y2.

->x is a floaty1 is a str, and y2 is a NoneType.

It is important to remember that assigning a variable y2 to a function that prints a value but does not return a value will results in that variable y2 being oftype NoneType.

  • Write a simple function

You can use it as a pattern to define shout().

def square():
new_value = 4 ** 2
return new_value

# Define the function shout
def shout():
"""Print a string with three exclamation marks"""
# Concatenate the strings: shout_word
shout_word = 'congratulations'+ '!!!'

# Print shout_word
print(shout_word)

# Call shout
shout()

  • Single-parameter functions

You will now update shout() by adding a parameter so that it can accept and process any string argument passed to it.

# Define shout with the parameter, word
def shout(word):
"""Print a string with three exclamation marks"""
# Concatenate the strings: shout_word
shout_word = str(word) + '!!!'

# Print shout_word
print(shout_word)

# Call shout with the string 'congratulations'
shout('congratulations')

  • Functions that return single values

You're getting very good at this! Try your hand at another modification to the shout() function so that it now returns a single value instead of printing within the function. Recall that thereturn keyword lets you return values from functions.

# Define shout with the parameter, word
def shout(word):
"""Return a string with three exclamation marks"""
# Concatenate the strings: shout_word
shout_word = str(word) + '!!!'

# Replace print with return
return shout_word

# Pass 'congratulations' to shout: yell
yell = shout('congratulations')

# Print yell
print(yell)

Multiple parameters and return values

  • Functions with multiple parameters

Here, you will modify shout() to accept two arguments.

# Define shout with parameters word1 and word2
def shout(word1,word2):
"""Concatenate strings with three exclamation marks"""
# Concatenate word1 with '!!!': shout1
shout1 = word1 + '!!!'

# Concatenate word2 with '!!!': shout2
shout2 = word2 + '!!!'

# Concatenate shout1 with shout2: new_shout
new_shout = shout1 + shout2

# Return new_shout
return new_shout

# Pass 'congratulations' and 'you' to shout(): yell
yell = shout('congratulations', 'you')

# Print yell
print(yell)

  • A brief introduction to tuples

how to construct, unpack, and access tuple elements.

a, b, c = even_nums

# Unpack nums into num1, num2, and num3
print(nums)
num1, num2, num3 = (3, 4, 6)

# Construct even_nums
print(nums)
nums = (2, 4, 6)
print(nums)
even_nums = nums
print(even_nums)

  • Function that return multiple values

Here you will return multiple values from a function using tuples.

Note that the return statement return x, y has the same result as return (x, y): the former actually packs x and yinto a tuple under the hood!

# Define shout_all with parameters word1 and word2
def shout_all(word1, word2):

# Concatenate word1 with '!!!': shout1
shout1 = word1 + '!!!'

# Concatenate word2 with '!!!': shout2
shout2 = word2 + '!!!'

# Construct a tuple with shout1 and shout2: shout_words
shout_words = (shout1, shout2)

# Return shout_words
return shout_words

# Pass 'congratulations' and 'you' to shout_all(): yell1, yell2
yell1, yell2 = shout_all('congratulations','you')

# Print yell1 and yell2
print(yell1)
print(yell2)

Bringing it all together

  • Bringing it all together (1)

You've learned how to add parameters to your own function definitions, return a value or multiple values with tuples, and how to call the functions you've defined.

For this exercise, your goal is to recall how to load a dataset into a DataFrame. The dataset contains Twitter data and you will iterate over entries in a column to build a dictionary in which the keys are the names of languages and the values are the number of tweets in the given language. The file tweets.csv is available in your current directory.

# Import pandas
import pandas as pd

# Import Twitter data as DataFrame: df
df = pd.read_csv('tweets.csv')

# Initialize an empty dictionary: langs_count
langs_count = {}

# Extract column from DataFrame: col
col = df['lang']

# Iterate over lang column in DataFrame
for entry in col:

# If the language is in langs_count, add 1
if entry in langs_count.keys():
langs_count[entry] += 1
# Else add the language to langs_count, set the value to 1
else:
langs_count[entry] = 1

# Print the populated dictionary
print(langs_count)

Great job! You've now defined the functionality for iterating over entries in a column and building a dictionary with keys the names of languages and values the number of tweets in the given language.

  • Bringing it all together (2)

In this exercise, you will define a function with the functionality you developed in the previous exercise, return the resulting dictionary from within the function, and call the function with the appropriate arguments

For your convenience, the pandas package has been imported aspd and the 'tweets.csv' file has been imported into thetweets_df variable.

# Define count_entries()
def count_entries(df, col_name):
"""Return a dictionary with counts of
occurrences as value for each key."""

# Initialize an empty dictionary: langs_count
langs_count = {}

# Extract column from DataFrame: col
col = df[col_name]

# Iterate over lang column in DataFrame
for entry in col:

# If the language is in langs_count, add 1
if entry in langs_count.keys():
langs_count[entry] += 1
# Else add the language to langs_count, set the value to 1
else:
langs_count[entry] = 1

# Return the langs_count dictionary
return langs_count

# Call count_entries(): result
result = count_entries(tweets_df,'lang')

# Print the result
print(result)

Python Data Science Toolbox Part 1 Learning 1 - User-defined functions的更多相关文章

  1. python data science handbook1

    import numpy as np import matplotlib.pyplot as plt import seaborn; seaborn.set() rand = np.random.Ra ...

  2. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

  3. 七个用于数据科学(data science)的命令行工具

    七个用于数据科学(data science)的命令行工具 数据科学是OSEMN(和 awesome 相同发音),它包括获取(Obtaining).整理(Scrubbing).探索(Exploring) ...

  4. Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习

    http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...

  5. 【转】Comprehensive learning path – Data Science in Python

    Journey from a Python noob to a Kaggler on Python So, you want to become a data scientist or may be ...

  6. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  7. 学习Data Science/Deep Learning的一些材料

    原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...

  8. R8:Learning paths for Data Science[continuous updating…]

    Comprehensive learning path – Data Science in Python Journey from a Python noob to a Kaggler on Pyth ...

  9. A Complete Tutorial to Learn Data Science with Python from Scratch

    A Complete Tutorial to Learn Data Science with Python from Scratch Introduction It happened few year ...

随机推荐

  1. C99中的变长数组(VLA)

    处理二维数组的函数有一处可能不太容易理解,数组的行可以在函数调用的时候传递,但是数组的列却只能被预置在函数内部.例如下面这样的定义: #define COLS 4 int sum3d(int ar[] ...

  2. mac常用工具

    这里我整理一下,mac上经常要用的的工具(仅供参考): Homebrew HomeBrew是Mac下面的一个包管理器,方便我们安装一些Mac OS没有的UNIX工具.软件. iTerm2 iTerm2 ...

  3. [转]Android Path里FillType功能

    对于简单的封闭图形(路径无相交的现象),图形的外部和内部和容易判断,但如果路径有相交的情况,对应重叠的部分,使用不同的填充模式,内部和外部的定义有所不同.填充模式可以分为两类: EVEN_ODD 意味 ...

  4. Django---渲染到模板

    简单的路由操作: from index import views urlpatterns = [ path('admin/', admin.site.urls), path('index/', vie ...

  5. POJ--1690 (Your)((Term)((Project)))(字符串处理)

    (Your)((Term)((Project))) Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3353 Accepted: ...

  6. hdu5266 pog loves szh III 【LCA】【倍增】

    Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of ...

  7. Python数据分析必备Anaconda安装、快捷键、包安装

    Python数据分析必备: 1.Anaconda操作 Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便 ...

  8. 【紫书】【重要】Abbott's Revenge UVA - 816 bfs 复杂模拟 带方向参数的迷宫

    题意:一个迷宫,每个交叉路口有一路标,限制了你从某方向进入该路口所能进入的路口. 题解:1.对于方向的处理:将node多增加一维dir,通过一个const 字符数组 加 上dir_id函数 以及一个方 ...

  9. Oracle安装部署之RedHat安装Oracle11g_R2

    硬件配置 内存 :≥1G 硬盘空间:≥10G 上传oracle11g安装包: putty上用wcw用户登录,通过ftp服务上传oracle安装文件到/home/wcw目录下解压 #unzip linu ...

  10. Linux free命令详解

    前段时间有个项目的用C写的,性能测试时发现内存泄露问题.关于怎么观察内存使用问题,free是很好用的一个命令. 参数讲解 bash-3.00$ freetotal       used       f ...