HDU 6278 - Just h-index - [莫队算法+树状数组+二分][2018JSCPC江苏省赛C题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6278
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)
The h-index of an author is the largest h where he has at least h papers with citations not less than h.
Bobo has published n papers with citations a1,a2,…,an respectively.
One day, he raises q questions. The i-th question is described by two integers li and ri, asking the h-index of Bobo if has *only* published papers with citations ali,ali+1,…,ari.
The input consists of several test cases and is terminated by end-of-file.
The first line of each test case contains two integers n and q.
The second line contains n integers a1,a2,…,an.
The i-th of last q lines contains two integers li and ri.
## Constraint
* 1≤n,q≤105
* 1≤ai≤n
* 1≤li≤ri≤n
* The sum of n does not exceed 250,000.
* The sum of q does not exceed 250,000.
题意:
一个作者它的“h-index”指的是:有一个最大的正整数h,且满足他有至少h篇论文的引用量不低于h。
现在给出n篇论文的引用量,m个区间[L,R]的查询,询问假设他只发了[L,R]这个区间内的这些论文,则他的h-index为多少。
题解:
当初比赛的时候不会主席树,也不会莫队,只能拿着普通的线段树在那里硬刚,结果十分凄惨。
现在会了分块版的莫队算法,回来补题了。
考虑num[c]表示引用量为c的文章数,那么用树状数组维护就可以 $O\left( {\log _2 N} \right)$ 的进行单点修改、区间查询,正好符合题目要求;
所以我们每次区间转移进行 $O\left( {\log _2 N} \right)$ 的进行单点修改,
然后转移结束之后,当前区间的答案(h_index)就可以通过 二分查找 + $O\left( {\log _2 N} \right)$ 的区间查询 得到。
时间复杂度大概在 $O\left( {N \cdot \sqrt N \cdot \left( {\log _2 N} \right)^2 } \right)$,从理论上讲应该可以过。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+;
const int MAXM=1e5+; int n,m;
int citation[MAXN];
int h_idx[MAXM];
struct Query
{
int block;
int id;
int l,r;
bool operator <(const Query &oth) const
{
if(block==oth.block) return r<oth.r;
return block<oth.block;
}
}query[MAXM]; struct _BIT{
int N,C[MAXN];
int lowbit(int x){return x&(-x);}
void init(int n)//初始化共有n个点
{
N=n;
for(int i=;i<=N;i++) C[i]=;
}
void add(int pos,int val)//在pos点加上val
{
while(pos<=N)
{
C[pos]+=val;
pos+=lowbit(pos);
}
}
int sum(int pos)//查询1~pos点的和
{
int ret=;
while(pos>)
{
ret+=C[pos];
pos-=lowbit(pos);
}
return ret;
}
}BIT; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
int len=sqrt(n);
for(int i=;i<=n;i++) scanf("%d",&citation[i]); for(int i=;i<=m;i++)
{
scanf("%d%d",&query[i].l,&query[i].r);
query[i].block=query[i].l/len;
query[i].id=i;
}
sort(query+,query+m+); BIT.init(n);
int pl=;
int pr=;
int cnt=;
for(int i=;i<=m;i++)
{
if(pr<query[i].r)
{
for(int j=pr+;j<=query[i].r;j++)
{
BIT.add(citation[j],);
cnt++;
}
}
if(pr>query[i].r)
{
for(int j=pr;j>query[i].r;j--)
{
BIT.add(citation[j],-);
cnt--;
}
}
if(pl<query[i].l)
{
for(int j=pl;j<query[i].l;j++)
{
BIT.add(citation[j],-);
cnt--;
}
}
if(pl>query[i].l)
{
for(int j=pl-;j>=query[i].l;j--)
{
BIT.add(citation[j],);
cnt++;
}
}
pl=query[i].l;
pr=query[i].r; int l=,r=n,mid;
while(l<r)
{
mid=(l+r+)/;
if(cnt-BIT.sum(mid-)<mid) r=mid-;
else l=mid;
} h_idx[query[i].id]=r;
} for(int i=;i<=m;i++) printf("%d\n",h_idx[i]);
}
}
HDU 6278 - Just h-index - [莫队算法+树状数组+二分][2018JSCPC江苏省赛C题]的更多相关文章
- 【bzoj3289】Mato的文件管理 离散化+莫队算法+树状数组
原文地址:http://www.cnblogs.com/GXZlegend/p/6805224.html 题目描述 Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份 ...
- HDU-6534-Chika and Friendly Pairs (莫队算法,树状数组,离散化)
链接: https://vjudge.net/contest/308446#problem/C 题意: Chika gives you an integer sequence a1,a2,-,an a ...
- BZOJ3289 Mato的文件管理(莫队算法+树状数组)
题目是区间逆序数查询. 莫队算法..左或右区间向左或右延伸时加或减这个区间小于或大于新数的数的个数,这个个数用树状数组来统计,我用线段树超时了.询问个数和数字个数都记为n,数字范围不确定所以离散化,这 ...
- 【BZOJ3289】Mato的文件管理 莫队算法+树状数组
[BZOJ3289]Mato的文件管理 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号.为了防止他人偷拷,这些资料都是 ...
- BZOJ3289【莫队算法+树状数组+离散化】
思路: 区间逆序数即是交换次数. 逆序数,可以用树状数组吧. 怎么处理区间变换的时候求逆序数啊.. 这里分成左边的增/删,右边的增/删 因为是按时序插入, 所以左边增,增一个数,计算:ans+=sun ...
- BZOJ 3289:Mato的文件管理(莫队算法+树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3289 题意:…… 思路:求交换次数即求逆序对数.确定了这个之后,先离散化数组.然后在后面插入元素的话 ...
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
- 【BZOJ】3289: Mato的文件管理(莫队算法+树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3289 很裸的莫队... 离线了区间然后分块排序后,询问时搞搞就行了. 本题中,如果知道$[l, r] ...
- BZOJ 2120: 数颜色 带修改的莫队算法 树状数组套主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=2120 标题里是两种不同的解法. 带修改的莫队和普通莫队比多了个修改操作,影响不大,但是注意一下细节 ...
随机推荐
- 泛泰A870K去掉相机快门声音的方法
首先ROOT手机,挂载读写,/system/media/audio/ui里面哈,把camera-click.ogg改成camera-click.ogg.bak就可以了 转载自:http://bbs.9 ...
- Java实现窗体动态加载磁盘文件
在使用图形界面操作系统时,当打开一个文件夹系统会自动列出该文件夹下的所有文件及子文件夹.本实例实现了类似的功能:首先让用户选择一个文件夹,程序会动态列出该文件夹下的所有文件:如果该文件是隐藏文件,就在 ...
- JVM虚拟机内存模型以及GC机制
JAVA堆的描述如下: 内存由 Perm 和 Heap 组成. 其中 Heap = {Old + NEW = { Eden , from, to } } JVM内存模型中分两大块,一块是 NEW Ge ...
- PostgreSQL的表空间
1. 表空间的概念 PostgreSQL中的表空间允许在文件系统中定义用来存放表示数据库对象的文件的位置.在PostgreSQL中表空间实际上就是给表指定一个存储目录. 2. 表空间的作用 官方解释 ...
- DATAGUARD的搭建
ORACLE Data Guard 理论知识 请查看此blog :http://blog.csdn.net/haibusuanyun/article/details/11519241 Oracle D ...
- Linux CentOS6.5上搭建环境遇到的问题
1.卸载CentOS自带的JDK 查看centos上 安装的jdk:rpm -qa|grep jdk 出现如下: java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86 ...
- java中调用groovy
Groovy在Java中的应用,做几个小例子以备查 package com.boco.efficiency.groovy; import groovy.lang.Binding; import gro ...
- 雷达波Shader
OSG版本: vert #version varying out vec3 v; void main() { gl_FrontColor = gl_Color; gl_Position = ftran ...
- 通过设置P3P头来实现跨域访问COOKIE
通过设置P3P头来实现跨域访问COOKIE 实际工作中,类似这样的要求很多,比如说,我们有两个域名,我们想实现在一个域名登录后,能自动完成另一个域名的登录,也就是PASSPORT的功能. 我只写一个大 ...
- java基础---->java多线程的使用(十)
这里介绍一下java中关于线程状态的知识,主要通过代码演示各种状态出现的时机.少年时我们追求激情,成熟后却迷恋平庸,在我们寻找,伤害,背离之后,还能一如既往的相信爱情,这是一种勇气.每个人都有属于自己 ...