POJ-1644 To Bet or Not To Bet(概率DP)
To Bet or Not To Bet
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 1668 Accepted: 541
Description
Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below.
A chip is initially placed on the Start square. The player then tries to move the chip to the End square through a series of turns, at which point the game ends. In each turn a coin is fl
ipped: if the coin is heads the chip is moved one square to the right and if the coin is tails the chip is moved two squares to the right (unless the chip is one square away from the End square, in which case it just moves to the End square). At that point, any instruction on the square the coin lands on must be followed. Each instruction is one of the following:
1. Move right n squares (where n is some positive integer)
2. Move left n squares (where n is some positive integer)
3. Lose a turn
4. No instruction
After following the instruction, the turn ends and a new one begins. Note that the chip only follows the instruction on the square it lands on after the coin flip. If, for example, the chip lands on a square that instructs it to move 3 spaces to the left, the move is made, but the instruction on the resulting square is ignored and the turn ends. Gambling for this game proceeds as follows: given a board layout and an integer T, you must wager whether or not you think the game will end within T turns.
After losing his shirt and several other articles of clothing, Alexander has decided he needs professional help-not in beating his gambling addiction, but in writing a program to help decide how to bet in this game.
Input
Input will consist of multiple problem instances. The first line will consist of an integer n indicating the number of problem instances. Each instance will consist of two lines: the first will contain two integers m and T (1 <= m <= 50, 1 <= T <= 40), where m is the size of the board excluding the Start and End squares, and T is the target number of turns. The next line will contain instructions for each of the m interior squares on the board. Instructions for the squares will be separated by a single space, and a square instruction will be one of the following: +n, -n, L or 0 (the digit zero). The first indicates a right move of n squares, the second a left move of n squares, the third a lose-a-turn square, and the fourth indicates no instruction for the square. No right or left move will ever move you off the board.
Output
Output for each problem instance will consist of one line, either
Bet for. x.xxxx
if you think that there is a greater than 50% chance that the game will end in T or fewer turns, or
Bet against. x.xxxx
if you think there is a less than 50% chance that the game will end in T or fewer turns, or
Push. 0.5000
otherwise, where x.xxxx is the probability of the game ending in T or fewer turns rounded to 4 decimal places. (Note that due to rounding the calculated probability for display, a probability of 0.5000 may appear after the Bet for. or Bet against. message.)
Sample Input
5
4 4
0 0 0 0
3 3
0 -1 L
3 4
0 -1 L
3 5
0 -1 L
10 20
+1 0 0 -1 L L 0 +3 -7 0
Sample Output
Bet for. 0.9375
Bet against. 0.0000
Push. 0.5000
Bet for. 0.7500
Bet for. 0.8954
概率DP题目,
递推即可,
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <string>
using namespace std;
#define MAX 999999
char a[55];
int m,t;
double dp[55][55];
int b[55];
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
memset(dp,0,sizeof(dp));
memset(b,0,sizeof(b));
scanf("%d%d",&m,&t);
for(int i=1;i<=m;i++)
{
scanf("%s",a);
if(a[0]=='L')
b[i]=MAX;
else
sscanf(a,"%d",&b[i]);
}
b[0]=0;b[m+1]=0;b[m+2]=-1;
dp[0][0]=1.0;
for(int i=0;i<t;i++)
{
for(int j=0;j<m+1;j++)
{
if(b[j+1]==MAX)
dp[i+2][j+1]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+1]+1]+=dp[i][j]*0.5;
if(b[j+2]==MAX)
dp[i+2][j+2]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+2]+2]+=dp[i][j]*0.5;
}
}
double ans=0;
for(int i=0;i<=t;i++)
ans+=dp[i][m+1];
if(ans>0.5)
printf("Bet for. %.4f\n",ans);
else if(ans==0.5)
printf("Push. 0.5000\n");
else if(ans<0.5)
printf("Bet against. %.4f\n",ans);
}
return 0;
}
POJ-1644 To Bet or Not To Bet(概率DP)的更多相关文章
- poj 2151 Check the difficulty of problems(概率dp)
poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...
- POJ 2151 Check the difficulty of problems:概率dp【至少】
题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...
- POJ 2151 Check the difficulty of problems (概率dp)
题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...
- UVA 1541 - To Bet or Not To Bet(概率递推)
UVA 1541 - To Bet or Not To Bet 题目链接 题意:这题题意真是神了- -.看半天,大概是玩一个游戏,開始在位置0.终点在位置m + 1,每次扔一个硬币,正面走一步,反面走 ...
- UVA 1541 - To Bet or Not To Bet 记忆化DP概率
Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a n ...
- poj 3071 Football(概率dp)
id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...
- 【POJ】2151:Check the difficulty of problems【概率DP】
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8903 ...
- 【POJ 2750】 Potted Flower(线段树套dp)
[POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4566 ...
- POJ 2096 Collecting Bugs (概率DP,求期望)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
随机推荐
- nuget包循环引用问题
1.项目中有类库YesWay.Nlog.RabbitMQ,依赖项如下YesWay.Nlog.RabbitMQ=>YesWay.Service.Discovery=>YesWay.Log 2 ...
- Java -- Java 类集 -- 目录
13.1 认识类集 13.1.1 基本概念 13.1.2 类集框架主要接口 13.2 Collection接口 13.2.1 Collection接口的定义 13.2.2 Collection子接口的 ...
- DokuWiki 开源wiki引擎程序
DokuWiki是一个开源wiki引擎程序,运行于PHP环境下.DokuWiki程序小巧而功能强大.灵活,适合中小团队和个人网站知识库的管理. 官网:https://www.dokuwiki.org/ ...
- Selenium 选项卡管理
什么是选项卡: from selenium import webdriver browser = webdriver.Chrome() browser.get("http://www.bai ...
- centos6.4安装 jupyter-notebook
自上次发布了文章后有些网友就说不能实现效果,根据自己的实验发现确实有此事,那是因为版本的变化问题.这次基于yum仓库里的jupyter notebook 5.0.0版本实现: 系统:最小化安装[习惯性 ...
- linux系统如何操作隐藏文件
在linux下,以点"."开头命名的文件在系统中被视为隐藏文件.因此,如果想隐藏某个文件或目录,一种简单的办法就是把文件名命名为点开头. 对于目录backcron,可以这样操作隐藏 ...
- vim 编辑基础使用-----linux编程
Linux系统编程: VIM编辑器 | VIM Introduce 学习 vim 并且其会成为你最后一个使用的文本编辑器.没有比这个更好的文本编辑器了,非常地难学,但是却不可思议地好用. 我建议下面这 ...
- STL——配接器(adapters)
一.配接器 <Design Patterns>一书提到23个最普及的设计模式,其中对adapter样式的定义如下:将一个class的接口转换为另一个class 的接口,使原本因接口不兼容而 ...
- codeforces水题100道 第二十六题 Codeforces Beta Round #95 (Div. 2) A. cAPS lOCK (strings)
题目链接:http://www.codeforces.com/problemset/problem/131/A题意:字符串大小写转换.C++代码: #include <cstdio> #i ...
- 【存储过程】用SQL语句获得一个存储过程返回的表
定义一个存储过程如下: create proc [dbo].[test1] @id int as select 1 as id,'abc' as name union all select @id a ...