SCOI 2005 互不侵犯
洛谷 P1896 [SCOI2005]互不侵犯
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入格式
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出格式
所得的方案数
输入输出样例
输入 #1复制
输出 #1复制
题解:
原谅我一开始看到题还以为是爆搜。。。
其实是一道状态压缩的题目。
蒟蒻自己一个比较大的进步就是把自己状态设置对了...
设置:\(dp[i][j][k]\)为第\(i\)行状态为\(j\)、已经用了\(k\)个国王时的方案数。
状态压缩大体有这么几步:设置状态\(\rightarrow\)考虑转移方式\(\rightarrow\)按转移方式考虑预处理和判断转移条件\(\rightarrow\)开始转移\(\rightarrow\)统计答案。
那么我们设置好状态,开始考虑转移方式:我们发现,若是想从第\(i-1\)行开始转移,转移的条件一是当前和上一次的状态,但是,这些状态的改变必然还会改变国王的个数。也就是说,这数组的两维是有联系的,是自变量和因变量的关系。所以我们因此想到,既然是自变量和因变量的关系,我们莫不如由此构建一个映射,存下来每个状态和每个状态需要的国王人数。这样我们转移的时候就没啥问题了。
如何预处理呢?我们想到,我们需要按行处理状态,每个状态有放国王和不放国王两种选择。因为是预处理,我们是肯定不能用递推和\(DP\)的(你想干啥)
所以我们考虑搜索。
一次搜索可以处理出所有合法的行的方式。
这里插一嘴,因为我们已经把所有合法的行的方式都求出来了,所以我们没必要再把\(dp\)数组的第二维开那么大,构建好映射关系之后,直接用\(cnt\)代替这个二进制状态即可。(因为\(1-cnt\)的每个数都对应着一个数组\(s[i]\)作为状态。)
然后再转移的时候进行判断是否合法就可以。
转移方程:
\]
这里的\(k,j\)分别表示一种状态。
代码:
#include<cstdio>
#define int long long
using namespace std;
int n,K,cnt,ans;
int s[100],num[100];
int dp[10][100][110];
//dp[i][j][k]表示前i-1行放完,第i行状态为j、有k个国王时的方案数
//状态0/1:0:国王攻击不到;1:被国王占领
void dfs(int pos,int st,int tot)
{
if(pos>=n)
{
s[++cnt]=st;
num[cnt]=tot;
return;
}
dfs(pos+1,st,tot);
dfs(pos+2,st+(1<<pos),tot+1);
}
signed main()
{
scanf("%lld%lld",&n,&K);
dfs(0,0,0);
for(int i=1;i<=cnt;i++)
dp[1][i][num[i]]=1;
for(int i=2;i<=n;i++)
for(int j=1;j<=cnt;j++)
for(int k=1;k<=cnt;k++)
{
if(s[j]&s[k])
continue;
else if(s[j]&(s[k]>>1))
continue;
else if(s[j]&(s[k]<<1))
continue;
else
for(int l=num[j];l<=K;l++)
dp[i][j][l]+=dp[i-1][k][l-num[j]];
}
ans=0;
for(int i=0;i<=cnt;i++)
ans+=dp[n][i][K];
printf("%lld",ans);
return 0;
}
SCOI 2005 互不侵犯的更多相关文章
- C++之路进阶——codevs2451(互不侵犯)
2451 互不侵犯 2005年省队选拔赛四川 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 在N×N的棋盘里 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- [bzoj1087][scoi2005]互不侵犯king
题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子. 思路 首先,搜索可以放弃,因为这是一 ...
- 【状压DP】bzoj1087 互不侵犯king
一.题目 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上.下.左.右,以及左上.左下.右上.右下八个方向上附近的各一个格子,共8个格子. I ...
- BZOJ-1087 互不侵犯King 状压DP+DFS预处理
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...
- SCOI2005互不侵犯King
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1499 Solved: 872[Submit][S ...
- 洛谷1377 M国王 (SCOI2005互不侵犯King)
洛谷1377 M国王 (SCOI2005互不侵犯King) 本题地址:http://www.luogu.org/problem/show?pid=1377 题目描述 天天都是n皇后,多么无聊啊.我们来 ...
- CODEVS 2451 互不侵犯
2451 互不侵犯 题目描述 Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格 ...
- 洛谷 P1896 互不侵犯King
P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...
随机推荐
- Centos7更新阿里云的yum源
1.进入yum文件夹 cd /etc/yum.repos.d/ 2.下载阿里云源 wget "http://mirrors.aliyun.com/repo/Centos-7.repo&quo ...
- poj 3468 A Simple Problem with Integers 线段树 题解《挑战程序设计竞赛》
地址 http://poj.org/problem?id=3468 线段树模板 要背下此模板 线段树 #include <iostream> #include <vector> ...
- Mysql中事务ACID实现原理
引言 照例,我们先来一个场景~ 面试官:"知道事务的四大特性么?"你:"懂,ACID嘛,原子性(Atomicity).一致性(Consistency).隔离性(Isola ...
- 趣谈Linux操作系统学习笔记:第二十九讲
一.引子 在这之前,有一点你需要注意.解析系统调用是了解内核架构最有力力的一把钥匙,这里我们只要重点关注这几个最重要的系统调用就可以了 1.mount 系统调用用于挂载文件系统:2.open 系统调用 ...
- 阿里Nacos-配置-多环境
多环境的配置隔离是配置中心最基础的一个功能之一.不同的环境配置的值不一样,比如数据库的信息,业务的配置等. Spring Boot 多环境配置 首先我们来回顾下在Spring Boot中用配置文件的方 ...
- cd 到目录自动ls
$vim ~/.bashrc 文件末尾加入: cdls() { cd "${1}" ls; } alias cd='cdls' $source ~/.bashrc
- 前端优化,包括css,jss,img,cookie
前端优化,来自某懒观看麦子学院视频的笔记. 尽可能减少HTTP的请求数 使用CDN 添加Expirs头,或者Cache-control Gzip组件压缩文件内容 将CSS放在页面上方 将脚本放到页面下 ...
- Selenium+java - 关于富文本编辑器的处理
什么是富文本编辑器? 富文本编辑器,Rich Text Editor, 简称 RTE, 是一种可内嵌于浏览器,所见即所得的文本编辑器.具体长啥样,如下图: 通过自动化操作富文本编辑器 模拟场景:在富文 ...
- RAID 2.0 技术(块虚拟化技术)
RAID 2.0 技术(块虚拟化技术) RAID 2.0 技术(块虚拟化技术),该技术将物理的存储空间划分为若干小粒度数据块,这些小粒度的数据块均匀的分布在存储池中所有的硬盘上,然后这些小粒度的数据块 ...
- KiRaiseException函数逆向
KiRaiseException函数是记录异常的最后一步,在这之后紧接着就调用KiDispatchException分发异常. 我们在逆向前,先看一下书中的介绍: 1. 概念认知: KiRaiseEx ...