【UOJ#61】【UR #5】怎样更有力气(最小生成树)
【UOJ#61】【UR #5】怎样更有力气(最小生成树)
题面
题解
最最最暴力的想法是把所有边给处理出来然后跑\(MST\)。
考虑边权的情况,显然离线考虑,把么一天按照\(w_i\)进行排序,显然在这一天的可以连的所有点中,我们能连则连。
考虑把这一天的所有的限制给弄出来(也就是弄出限制的子图)。
如果限制的数量不超过这一天的\(dis(u,v)\),显然任意两点之间都是可以直接连边的,那么直接连起来就好了。
否则的话我们要找到一个复杂度和限制数量相关的东西来连边,并且因为两点长度小于限制数量,所以可以暴力把路径上的所有点全部弄下来。
找到度数最小的一个点,那么点集被分成了两类:一类与这个点相连,记做集合\(V\),另外一个与这个点不相邻,所以可以直接与这个点连在一起,记做集合\(U\)。
\(V\)集合中的点如果要连边,要么就是从\(U\)集合连过来的,要么是从\(V\)集合连过来的。
如果是从\(U\)集合连过来,考虑\(y\in V\),如果\(deg[y]\lt |U|\),显然至少和一个\(U\)集合中的点无边,所以可以直接连接。否则的话\(O(deg[y])\)的给周围的所有点暴力搞一搞。这样子复杂度是\(O(\sum deg[y])=O(k)\)的。
否则对于\(V\)集合连向\(V\)集合,可以暴力枚举集合中的两个点,因为度数最小的点的度数是根号级别的,所以这里\(O(d^2)=O(k)\)。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 300300
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,P;ll ans;
struct Work{int u,v,w,t;}p[MAX];
bool operator<(Work a,Work b){return a.w<b.w;}
struct Limit{int a,b;};
vector<Limit> A[MAX];
vector<int> E[MAX];int dg[MAX];
struct DSU
{
int f[MAX];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
}B,C;
int fa[MAX],dep[MAX];
bool check(int u,int v,int k)
{
while(k--)
{
if(dep[u]<dep[v])swap(u,v);
u=fa[u];if(u==v)return false;
}
return true;
}
void Merge(int u,int v,int w)
{
u=B.getf(u);v=B.getf(v);
if(u==v)return;
B.f[u]=v;ans+=w;
}
int S[MAX],len;
int U[MAX],su;
void GetLine(int u,int v)
{
len=0;
while(u^v)
{
if(dep[u]<dep[v])swap(u,v);
S[++len]=u;u=fa[u];
}
S[++len]=u;
}
bool vis[MAX];
int main()
{
n=read();m=read();P=read();dep[1]=1;
for(int i=2;i<=n;++i)fa[i]=read(),dep[i]=dep[fa[i]]+1;
for(int i=1;i<=m;++i)p[i].u=read(),p[i].v=read(),p[i].w=read(),p[i].t=i;
for(int i=1;i<=P;++i)
{
int t=read(),a=read(),b=read();
A[t].push_back((Limit){a,b});
}
sort(&p[1],&p[m+1]);
for(int i=1;i<=n;++i)B.f[i]=C.f[i]=i;
for(int i=1;i<=m;++i)
{
if(check(p[i].u,p[i].v,A[p[i].t].size()))
{
int u=C.getf(p[i].u),v=C.getf(p[i].v);
while(u^v)
{
if(dep[u]<dep[v])swap(u,v);
Merge(u,fa[u],p[i].w);
C.f[u]=fa[u],u=C.getf(u);
}
}
else
{
for(auto u:A[p[i].t])
{
dg[u.a]++;dg[u.b]++;
E[u.a].push_back(u.b);
E[u.b].push_back(u.a);
}
GetLine(p[i].u,p[i].v);
int x,mn=1e9;su=0;
for(int j=1;j<=len;++j)if(dg[S[j]]<mn)mn=dg[S[j]],x=S[j];
for(int v:E[x])vis[v]=true;
for(int j=1;j<=len;++j)if(!vis[S[j]])U[++su]=S[j],Merge(S[j],x,p[i].w);
for(int v:E[x])vis[v]=false;
for(int y:E[x])
{
for(int v:E[y])vis[v]=true;
for(int v:E[x])if(!vis[v])Merge(y,v,p[i].w);
for(int v:E[y])vis[v]=false;
if(E[y].size()<su)Merge(x,y,p[i].w);
else
{
for(int v:E[y])vis[v]=true;
for(int j=1;j<=su;++j)
if(!vis[U[j]])Merge(U[j],y,p[i].w);
for(int v:E[y])vis[v]=false;
}
}
for(auto u:A[p[i].t])
{
--dg[u.a];--dg[u.b];
E[u.a].clear();
E[u.b].clear();
}
}
}
printf("%lld\n",ans);
return 0;
}
【UOJ#61】【UR #5】怎样更有力气(最小生成树)的更多相关文章
- UOJ#61. 【UR #5】怎样更有力气
大力水手问禅师:“大师,很多事情都需要用很大力气才能完成,而我在吃了菠菜之后力气很大,于是就导致我现在非常依赖菠菜.我很讨厌我的现状,有没有办法少吃点菠菜甚至不吃菠菜却仍很有力气?” 禅师浅笑,答:“ ...
- 「UR#5」怎样更有力气
「UR#5」怎样更有力气 解题思路 考虑没有限制的情况,一定是把操作离线下来,按照边权从小到达做.可以发现,如果没有限制,完全图是多余的,直接拿树边进行合并就可以了.我们要做这么一件事情,把每个点属于 ...
- YYHS-怎样更有力气
题目描述 OI大师抖儿在夺得银牌之后,顺利保送pku.这一天,抖儿问长者:"我虽然已经保送了,但我的志向是为国家健康工作五十年.请问我应该怎样变得更有力气?" 长者回答:&quo ...
- 【NOIP2017练习】怎样更有力气(二分答案,线性扫描)
题意:OI大师抖儿在夺得银牌之后,顺利保送pku.这一天,抖儿问长者:“我虽然已经保送了,但我的志向是为国家健康工作五十年.请问我应该怎样变得更有力气?” 长者回答:“你啊,Too Young T ...
- 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)
[UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- 【UR #5】怎样更有力气
Problem Description 大力水手问禅师:"大师,很多事情都需要用很大力气才能完成,而我在吃了菠菜之后力气很大,于是就导致我现在非常依赖菠菜.我很讨厌我的现状,有没有办法少吃点 ...
- UOJ61. 【UR #5】怎样更有力气
题目链接 Statement 给定一棵 \(n\) 点树 \(T\) 和 \(m\) 个操作 v u w : 在 \(T\) 中 \(u,v\) 的最短路上所有点里面选出若干对(可以不选,可以重复), ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
随机推荐
- MongoDB for OPS 03:分片 shard 集群
写在前面的话 上一节的复制集也就是主从能够解决我们高可用和数据安全性问题,但是无法解决我们的性能瓶颈问题.所以针对性能瓶颈,我们需要采用分布式架构,也就是分片集群,sharding cluster! ...
- C# - VS2019通过重写pictureBox实现简单的桌面截图功能
前言 通过创建客制化组件(继承pictureBox),新增属性和构造方法,实现屏幕截图时需要用到的功能点.再通过监控鼠标按下.移动和释放,来获取起始点区域.最后通过操作BMP图像,实现截图的新增.修改 ...
- java基础(21):异常
1. 异常 什么是异常?Java代码在运行时期发生的问题就是异常. 在Java中,把异常信息封装成了一个类.当出现了问题时,就会创建异常类对象并抛出异常相关的信息(如异常出现的位置.原因等). 1.1 ...
- JVM内存分配策略,及垃圾回收算法
本人免费整理了Java高级资料,一共30G,需要自己领取;传送门:https://mp.weixin.qq.com/s/JzddfH-7yNudmkjT0IRL8Q 说起垃圾收集(Garbage Co ...
- DB2 catalog 编目
(步骤)ap用户: (1)进入db2 db2 (2)catalog database 命令 catalog db list (3)查看本地节点目录.IP.节点名.服务名称.目录条目类型 list no ...
- DevExpress的分页Tab控件XtraTabControl控件的使用
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...
- 【转载】Gradle for Android 第六篇( 测试)
由于现阶段Android开发趋于敏捷开发,再加上国内大大小小的互联网公司都在做app,导致很多这会是一个系列,所以如果你看完这篇文章,请看下列文章: 开发人员对单元测试没有基本的概念,但是本篇博文不会 ...
- ESP8266与ESP8285开发时有什么区别
ESP8266模块在WiFi联网领域已经被广泛使用,但是ESP8266芯片是需要外挂Flash芯片的,这样就使模块不能做的更小.之后乐鑫公司又推出了ESP8285芯片,直接集成了1MByte的Flas ...
- [b0037] python 归纳 (二二)_多进程数据共享和同步_管道Pipe
# -*- coding: utf-8 -*- """ 多进程数据共享 管道Pipe 逻辑: 2个进程,各自发送数据到管道,对方从管道中取到数据 总结: 1.只适合两个进 ...
- Python—函数的参数传递
形参和实参 形参即形式参数,函数完成其工作时所需的信息.形参不占用内存空间,只有在被调用时才会占用内存空间,调用完了即被释放. 实参即实际参数,调用函数时传给函数的信息. # -*- coding: ...