引理

已知:k|a,k|b

求证:k|(m*a+n*b)

证明:∵ k|a

  ∴ 有p*k=a

  同理可得q*k=b

  ∴ p*k*m=m*a,q*k*n=n*b

  ∴ k(p*m+q*n)=m*a+n*b

  ∴ k|(m*a+n*b)

条件:a,b均为正整数

求证:gcd(a,b)=gcd(b,a%b)

证明:设m=gcd(a,b),n=gcd(b,a%b).

  则必有p能使p*b+a%b=a;

  ∵ n=gcd(b,a%b)

  ∴ n|(p*b+1*a%b)且n|b

  ∴ n|a 即 n为a,b公约数

  ∵ m=gcd(a,b)

  ∴ m>=n

  设q,使a-q*b=a%b

  ∵ m=gcd(a,b)

  ∴ m|(a-q*b)且m|b

  ∴ m|(a%b)

  ∴ m为b,a%b公约数

  ∵ n=gcd(b,a%b)

  ∴ n>=m

  ∴ n=m 命题得证

最后,gcd->伟大光荣正确的党!

最大公约数GCD学习笔记的更多相关文章

  1. iOS多线程之GCD学习笔记

    什么是GCD 1.全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 2.纯C语言,提供了非常多强大的函数 GCD的优势 GCD是苹果公司为多核的并行运算提出的解决方案 G ...

  2. 多线程-GCD学习笔记

    ********************************* 基本概念 *********************************** 1. Grand Central Dispatch ...

  3. O(1)gcd学习笔记

    设最大权值为\(M\) \(T=\sqrt M\) 定理 任意一个\(\le M\)的数一定可以表示为abc三个数的乘积 满足这三个数要么\(\le T\),要么是一个质数 证明: 考虑反证 假设\( ...

  4. stein法求gcd 学习笔记

    原理显然 由于当x,y都为奇数时进行辗转相见 每次减完必有偶数 而偶数最多除log次 那么也最多减log次 复杂度有保证 注:代码未验证 int gcd(int x,int y){ int res=1 ...

  5. iOS GCD学习笔记

    // 后台执行: dispatch_async(dispatch_get_global_queue(, ), ^{ // something }); // 主线程执行: dispatch_async( ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  7. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  8. 五一DAY1数论学习笔记

    by ruanxingzhi 整除性 如果a能把b除尽,也就是没有余数,则我们称a整除b,亦称b被a整除.(不是除以,是整除!!) 记作:\(a|b\) |这个竖杠就是整除符号 整除的性质 自反性 对 ...

  9. 初等数论学习笔记 III:数论函数与筛法

    初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 ...

随机推荐

  1. PowerDesigner 在通过jdbc连接数据库时 Could not Initialize JavaVM!

    最近用到PowerDesigner的逆向工程,从数据库中逆向生成模型,本想使用odbc连接的,但是需要安装驱动,mysql的还好弄,oracle对我来讲实在是有些麻烦,看到能用jdbc连接,就想试试, ...

  2. LCID

    Language Location (or type) Language ID Language tag Supported version Afar   0x1000 aa Release 9 Af ...

  3. 论文阅读计划1(Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming & An Enforcement of Real Time Scheduling in Spark Streaming & StyleBank: An Explicit Representation for Neural Ima)

    Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1] 简介:雅虎发布的一份各种流处理引擎的基准 ...

  4. 微服务之Service Fabric 系列 (一):概览、环境安装

    参考 微软官方文档  service fabric 百家号   大话微服务架构之微服务框架微软ServiceFabric正式开源 一.概述 1.概念 Azure Service Fabric 是一款分 ...

  5. 演练:创建和使用动态链接库 (C++)

    我们将创建的第一种类型的库是动态链接库 (DLL). 使用 DLL 是一种重用代码的绝佳方式. 您不必在自己创建的每个程序中重新实现同一例程,而只需对这些例程编写一次,然后从需要该功能的应用程序引用它 ...

  6. xe5 firemonkey关闭应用程序

    在FMX中,由Activity替代了Form的概念,虽然TForm类仍然存在,但MainForm通过关闭函数无法结束程序,使用Application.Terminate均无效,调整为: uses   ...

  7. Delphi&C#代码模拟“显示桌面”的功能(使用CreateOleObject('Shell.Application'))

    今天有人问我:“用shell打开文件(显示桌面.scf)的方式还是用模拟键盘(Win+D)显示桌面”这应该有更好的方法,就搜了搜,关键字定位“ToggleDesktop”因为显示桌面.scf的内容是: ...

  8. delphi android 录像(使用了JMediaRecorder,MediaRecorder的使用方法可参考网上java的相关说明)

    delphi xe系列自带的控件都无法保存录像,经网友帮忙,昨天终于实现了录像功能(但有个问题是录像时无画面显示),程序主要使用了JMediaRecorder,MediaRecorder的使用方法可参 ...

  9. select Demo

    #include <iostream> #include <WinSock2.h> using namespace std; #pragma comment(lib, &quo ...

  10. Java集合 ArrayList原理及使用

    ArrayList是集合的一种实现,实现了接口List,List接口继承了Collection接口.Collection是所有集合类的父类.ArrayList使用非常广泛,不论是数据库表查询,exce ...